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CHAPTER 1. INTRODUCTION 

Scope of the Chapter 

This chapter states the dissertation problem and explains its significance. It indicates 

the essential idea behind the approach adopted. It gives a brief statement of the findings. The 

chapter closes with the arrangement of the dissenation. 

The Dissertation Problem 

The photoinductive method is a relatively new method of nondestructive evaluation 

[14-15, 18-19] offering fine spatial resolution, e.g., of the order of tens of microns. The 

dissertation problem is to devise a numerical method that reconstructs the shape and size of a 

crack in a (nonmagnetic) metallic test specimen from given photoinductive data. The focus 

is on a particular category of cracks, namely, tight surface-breaking cracks. 

Significance of the Dissertation Problem 

Tight surface-breaking cracks are rather difficult to reconstruct, particularly if their 

linear dimensions are small, say, of the order of hundreds of microns. The tightness of such 

cracks tends to defeat x-ray inspection, as x-ray inspection looks for a difference in the 

atomic number. Likewise, the smallness of such cracks tends to defeat ultrasound inspection, 

as ultrasound inspection depends on a good temporal resolution. In contrast, the photo 

inductive method is expected to be well-suited for characterizing such cracks, because of its 

fine spatial resolution. 

Approach to the Dissertation Problem 

Our approach is based on three facts: 

(i) Each photoinductive measurement can be interpreted as the square of an electric field. 
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fii) The electric field mentioned in (1) is a function of a quantity known as the current 

dipole density. 

(iii) The support of the current dipole density — the set of points where the current dipole 

density is non-zero — can be identified as the crack. 

From (i) and (ii), the square of the electric field, i.e., the photoinductive measurement, is also 

a function of the current dipole density. If this function has an inverse, the current dipole 

density can be computed from the photoinductive measurement. The crack then emerges 

from (iii). 

The Findings of the Dissertation 

Using (synthetic) photoinductive measurements, we have shown that in principle it is 

possible to reconstruct cracks whose size is on the order of tenths of a millimeter in 

nonmagnetic metals, subject to the question of ill-posedness. Ill-posedness manifests itself as 

a kind of non-uniqueness: there exist a number of cracks such that photoinductive 

measurements for them differ only by a few per cent. An additional criterion ~ that of 

seeking a crack with the least perimeter — helps to select a unique crack. 

The photoinductive method also stably determines the geometry of larger cracks, with 

lengths of the order of a millimeter or more. 

Arrangement of the Dissertation 

We begin by delineating the specific category of cracks we wish to reconstruct: small, 

tight, surface-breaking cracks. Next we review the a.c. field measurement method and the 

standard eddy current method, which have been described in the literature in connection with 

crack characterization. While covering the eddy current method, we stress the concept of the 

current dipole density, as it is useful in the photoinductive method. We then examine the 

photoinductive method. After this, we explain our numerical method for reconstructing the 
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crack from photoinductive measurements. Applying the numerical method to (synthetic) 

photoinductive measurements, we analyze the successes and the limitations of the numerical 

method. The limitations are mainly due to the ill-posedness inherent in the dissertation 

problem. This brings us to the conclusion. 
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CHAPTER 2. THE TIGHT CRACK MODEL 

Scope of the Chapter 

This chapter sets out certain assumptions used to model tight cracks. It also explains 

the rationale for the assumptions. The chapter closes by mentioning certain nondestructive 

methods of characterizing cracks. 

Assumptions of the Tight Crack Model 

By the phrase "tight crack model", we mean a set of assumptions that simplify the 

geometry of the crack, thereby making the reconstruction of the crack a little easier. The 

assumptions are as follows. 

(i) The crack is so thin that it can be modeled as a two-dimensional figure. 

(ii) The two-dimensional figure mentioned in (i) lies in a given vertical cross-section of 

the test specimen. 

(iii) The crack is an electrical insulator. In particular, it is impossible for an electric 

current to pass normal through the two-dimensional figure mentioned in (i). 

Motivation for Assumption (i) 

A crack may be either surface-breaking or buried. The distinction is that if the crack 

is surface-breaking, its boundary intersects the top surface of the test specimen. The first step 

in reconstructing the crack is to know whether the crack is surface-breaking or buried. The 

tight crack model supposes that this first step has already been carried out and that the crack 

is known to be surface-breaking. 

A surface-breaking crack gives rise to an opening on the top surface of the test 

specimen (Figure 2.1). The very word "crack" suggests that width of the opening is small in 

some sense. The light crack model supposes that the width of the opening tends to zero. 
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This statement reduces the opening to a line, and the crack as a whole to a two-dimensional 

figure. This leads to the assumption (i) of the tight crack model. 

Motivation for Assumption (ii) 

There are some possibilities concerning the two-dimensional figure mentioned above. 

It may lie in a vertical cross-section of the test specimen, or in a plane inclined at some angle 

to the top surface, or in a curved surface rather than a plane. The mathematical model 

supposes that the two-dimensional figure lies in a vertical cross-section of the test specimen. 

There may more than one crack in the test specimen. If so, these cracks may lie in 

different vertical cross-sections of the test specimen. The tight crack model ignores this 

possibility by assuming that, if there is more than one crack, all the cracks are present in one, 

and the same, vertical cross-section of the test specimen (Figure 2.2). 

Consider a series of vertical cross-sections of the test specimens. One of these 

contains the crack(s). But which one? Fortunately, this question need not be considered as a 

complication, as the photoinductive method has the ability to directly determine which 

vertical cross-section of the test specimen contains the crack(s). In fact, the particular 

vertical cross-section containing the crack(s) can be considered a given piece of information. 

This leads to the assumption (ii) of the tight crack model. 

Motivation for Assumption (iii) 

Even a crack is a material of some kind. As the crack is surface-breaking, there is a 

path from the air above to the interior of the crack, and it is logical to suppose that the 

material of the crack is air. Another possibility is that the material of the crack may be the 

oxide of the metal [4, page 261]. Therefore there are two possibilities for the material of the 

crack ~ air or the oxide of the metal. In either case, the material of the crack is an electrical 

insulator. This leads to the assumption (iii) of the mathematical model. 
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Some Nondestructive Methods for Characterizing Cracics 

The very phrase "electrical insulator" occurring in assumption (iii) suggests that 

electromagnetic methods will be useful for characterizing the cracks we are interested in. In 

Chapter 3, we shall discuss an electromagnetic method known as the a.c. field measurement 

method. In Chapter 4, we shall discuss another electromagnetic method known as the 

standard eddy current method. However, the main subject of this dissertation is yet another 

electromagnetic method, known as the photoinductive method. 
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CHAPTER 3. CRACK RECONSTRUCTION USING 
THE A.C. HELD MEASUREMENT METHOD 

Scope of the Chapter 

This chapter explains how the a.c. field measurement method operates. It describes 

the working of the a.c. field measurement method in connection with two kinds of cracks: a 

one-dimensional infinite through crack and a crack with finite length, with a sketch of the 

relevant derivations. The chapter closes with some results on crack reconstruction. 

Operation of the A.C. Field Measurement Method 

The a.c. field measurement method, also known as the a.c. potential drop method [3, 

page 272], characterizes cracks by injecting current into the metallic test specimen, and 

measuring voltages. The frequency of the injected current is relatively high and the cracks 

are relatively large, so that the skin depth is much less than the crack depth. 

The apparatus is shown in Figure 3.1. A current source is used to inject current at the 

point M into the metallic test specimen, and collect it at N. The current travels by diverse 

paths through the metal from M to N (Figure 3.1). Let p,q,P,Q be points on the top 

surface of the test specimen such that p,q,P are on one side of the crack ABCD while Q is 

on the other side. Let pq = PQ = A. Let v,V be the voltages across pq and PQ 

respectively. These voltages are measured. In general v^V. The task is to characterize the 

crack from the measured voltages v and V. 

Intuitive Reason the Crack can be Reconstructed 

As a voltage is the line integral of an electric field, v depends on a number A, 

denoting the average length of the paths down which the current flows when the crack is 

absent. Similarly, V depends on a number L, denoting the average length of the paths 
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Figure 3.1. The apparatus of the a.c. field measurement method 
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down which the current flows when the crack is present. The difference between and V' 

depends on the difference between A and L. But the difference between A and L is of the 

order of the dimensions of the crack. Therefore, by studying the voltages and V. we 

expect to estimate the dimensions of the crack. 

The intuition indicated above is verified with a simple example of a crack termed the 

one-dimensional crack [3, page 255] Assume that the statements (i)-(iv) given below are 

true. 

(i) The leads of the voltmeter are twisted into a braid. Twisting the leads is a precaution 

against spurious components in the voltage [3, page 260]. 

(ii) The crack is covered by the tight crack model of Chapter 2. 

(iii) The crack and the test specimen extends to an infinite length in the direction 

perpendicular to the plane of the paper, or, equivalently, the crack and the test 

specimen have translational symmetry. 

(iv) The a.c. frequency tends to infinity, or, equivalently, the skin depth tends to zero. 

By the statements (i) and (ii), the area formed by the voltmeter probes, the wiring 

internal to the voltmeter, and the curve PABCDQ is small, ideally zero. To keep the 

derivation simple, let us say that the area is indeed zero. Therefore the magnetic flux cutting 

this area is also zero. By the law of electromagnetic induction 

Assumptions of the One-Dimensional Crack 

Derivations for a One-Dimensional Crack 

(3.1) 
voltmeter PABCDQ 
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The left-hand side can be identified as V. In the right-hand side, we use Ohm's law to 

replace the integrand E by J / O", where J is the current density and a the current density. 

Therefore 

V ' =  -  f j d i .  ( 3 . 2 )  
a 

PABCDQ 

In the same way 

=  - f j  t f l  
<7 J 

(3.3) 
w 

Next, by the translational symmetry ~ assumption (iii) — the current does not have a 

component perpendicular to the plane of the paper. And, by the thin skin limit — assumption 

(iv) ~ the current behaves like a current sheet. As a result, the current density is uniform. 

Equations 3.2 and 3.3 become 

V = — (PA + AB + BC + CD + DQ) (3.4) 
(7 

v = ^{pq) (3.5) 

Therefore 

V  _ P A  +  A B + B C  +  C D + D Q  

V pq 
(3.6) 

But 

PA + BC+DQ= PA+AD + DQ = PQ = A (3.7) 
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A B = C D  =  d  (3.8) 

p q  = A  (3.9) 

Therefore, 

V A + 2d 

V A 
(3.10) 

Or 

(3.11) 

As all the quantities on the right-hand side can be measured, d can be computed. In this 

simple one-dimensional situation, d is the only dimension of the crack to be determined. 

Therefore the crack is completely characterized. 

In many situations, cracks do not satisfy the statement (iii), i.e., there is no question of 

U"anslational symmetry. Such cracks are termed finite aspect ratio cracks [12, page 180]. For 

finite aspect ratio cracks, the derivation given above does not apply. Instead, a theory known 

as the unfolding model is used [7, 12, 13]. Its assumptions are as follows. 

(i) Consider the crack shown in Figure 3.2. Draw abcdef parallel to ABCDEF. Let the 

thickness of the space between abcdef and ABCDEF be a few skin depths. Let an 

a.c. current be injected into the test specimen. This current flows practically only in 

the space between abcdef and ABCDEF. In the space between the surfaces ab, AB, 

the current has no component normal to AB. In the space between the surfaces 

bc,BC, the current has no component normal to BC. In the space between the 

Assumptions of the Unfolding Model 
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surfaces cd, CD, the current has no component normal to CD. In the space between 

the surfaces de,DE, the current has no component normal to DE. In the space 

between the surfaces ef,EF, the current has no component normal to EF. Therefore 

the current density reduces to a two-component vector. By Ohm's law the same is 

true of the elecuic field [12, Equation 2.2]. 

(ii) Consider a path starting from the surface ABCDEF and ending on the surface 

abcdef (the path P in Figure 3.2). Each of the two components of the electric field 

decays exponentially, due to the effect of the skin depth [12, Equation 2.2]. 

(iii) No charge accumulates in the space between abcdef and ABCDEF [12, Equation 

2.3]. 

(iv) Consider any closed path drawn on ABCDEF (the path F in Figure 3.2). The line 

integral of the electric field on any such path is zero [12, Equation 2.3]. Or using the 

law of electromagnetic induction, the magnetic flux cutting the area enclosed by the 

closed path is zero. 

(v) Consider the following five spaces: 

ab,AB;bc, BC;cd, CD\de,DE,ef, EF 

The electric fields in these five spaces are analytical continuations of one another. To 

give a vivid illustration, suppose that these spaces were to laid out straight (Figure 

3.2). The five spaces would collapse into one long space. One, and the same, 

formula would hold for the electric field. This vivid manner of illustrating the 

property of analytical continuation is the reason for terming the model an unfolding 

model. 
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Sketch of the Derivations in the Unfolding Model 

Let a coordinate system be introduced into the unfolded view (Figure 3.2) such that 

the XY plane is the unfolded surface ABCDEF. According to statement (ii) of the unfolding 

model, the electric field has only XY components, E^{X,Y,Z),Ey(.X,Y,Z) • Putting Z = 0, 

we obtain Ef(X, K,0),£j,(X,K,0), which define a two-dimensional vector field depending on 

two variables XY. By statement (iv), this vector field is conservative, i.e., there exists a 

function 0{X,Y) such that 

From statement (iii), 0 ( X , Y )  is harmonic. Since 0 is a harmonic function of only two 

variable, rather than three, it is possible to introduce complex variable theory. Specifically, 

there exists a function ^iX,Y) such that 0, satisfy the Cauchy-Riemann equations: 

E, (X, r, 0) = —. EyiX, ̂ ,0) = ~. (3.12) 

(3.14) 

(3.13) 

Or if 

Z= X+iY 

W { Z ) =  0 { X , Y )  +  i ' { ' { X , Y )  

(3.15) 

(3.16) 

then 

dW d{<P + m + 

d Z ~  d X  ~  i d Y  
— Ex iEy (3.17) 
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Consider those points { X , Y )  on the unfolded view where the current is flowing. For such 

points (X.y), the components of the electric field £y(X.K,0).£j-(X,K,0) cannot both be 

zero, since the current is flowing. Therefore, dWidZ cannot be zero. Therefore, Z,W are 

connected by a conformal mapping. This means that Z can be considered as a function of 

W. Equivalently, it is meaningful to speak of the functions The 

importance of this comment is as follows. 

The current does not flow at a tangent to the surface-breaking edge nor at a tangent to 

the buried edge of the crack. By Ohm's law, the electric field does not have a component at a 

tangent to these edges. Therefore both the surface-breaking edge and the buried edge of the 

crack are characterized by a constant value of 0. This constant value can be chosen to be 

zero. Therefore the locus 

X = X(0,fOU (3-18) 

y = r((J),fOU (3-19) 

can be identified as the union of the buried and the surface-breaking edges of the crack. The 

strategy of reconstructing the crack is therefore to use the measured voltages to determine 

0, *F,X,Y, and hence the buried edge of the crack. The derivations are based on Plemelj's 

formula [12][13, page 368]. Omitting the details of the derivations, let us pass on to the 

results presented by Mclver [12]. 

Achievements with the Unfolding Model 

Using the unfolding model, it has been possible to reconstruct semicircular, 

semieliiptical and triangular cracks whose aspect ratios is of the order of 1.5 to 5.0. The 

accuracy of the reconstruction is good wherever the buried edge has a single well-defined 

tangent. For example, semicircular and semieliiptical cracks ~ which have a tangent ~ have 
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been reconstructed accurately. Triangular cracks have been reconstructed accurately 

everywhere except in a small neighborhood of the vertex. But at the vertex, the buried edge 

does has two tangents, and not one clear-cut tangent. 
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CHAPTER 4. CRACK RECONSTRUCTION USING 
THE STANDARD EDDY CURRENT METHOD 

Scope of the Chapter 

This chapter first describes the operation of the standard eddy current method. Next, 

it introduces the concept of the current dipole density. Then it covers the properties of the 

current dipole density. It also covers certain equations in which the current dipole density 

has a role. The chapter describes a crack reconstruction procedure used by Bowler. Norton 

and Harrison [2] touching on the subject of ill-posedness. The chapter closes with some 

results obtained with this reconstruction procedure. 

The Principle of the Standard Eddy Current Method 

The standard eddy current method operates by inducing a current in the test specimen 

and measuring an impedance. The apparatus is shown in Figure 4.1. A current source is 

connected to an air-core coil of cylindrical cross-section, set on the test specimen with axis 

vertical. In this condition, the test specimen is separated from the coil by the insulating case 

that houses the coil. Therefore, unlike the a.c. field measurement method, current cannot be 

injected into the test specimen. Rather, current is induced to flow in the test specimen by 

transferring power in a non-contact manner. This is described next. 

The time-varying current in the coil gives rise to a time-varying magnetic field 

directed roughly normal to the test specimen. The time-varying magnetic field, according to 

the law of elecu-omagnetic induction, gives rise to an electric field in the test specimen. By 

Ohm's law, a current, known as the eddy current, flows in the test specimen (Figure 4.1). The 

power for the eddy current, in the final analysis, comes from the current source driving the 

coil. 
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Figure 4.1. The apparatus of the standard eddy current method 
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The Importance of the Impedance 

If the current of the current source is Jl I cos col, and the impedance facing the 

current source is Z, the power provided by the current source is I'Z. By the design of the 

current source / is a constant, so that monitoring Z is equivalent to monitoring the power. 

The impedance Z is measured using an impedance analyzer (not shown in Figure 

4.1). After this, the coil is moved a considerable distance from the crack and the impedance 

is measured again. This is a new number, Z^. It indicates what the impedance would be in 

the absence of the crack and is termed the reference impedance. 

As the very word "reference" suggests, the standard eddy current method compares 

the numbers Z and Zg. If the test specimen does not have a crack, we would expect that 

Z = ZQ . On the other hand, if the test specimen does have a crack, we would expect the 

difference Z-Z^ to be relatively large. In short, the difference Z-Zg is sensitive to the 

presence or the absence of the crack. Conversely, we expect that a study of the difference 

Z - ZQ will help to reconstruct the crack. 

It is possible to move the coil down the length of the crack (Figure 4.2). This would 

give rise to multiple values of Z, one for each coil position, and hence to multiple values of 

Z -Zg. All these values may be used for crack reconstruction. 

The Current Dipole Density 

As explained by Bowler [1], a key step in the reconstruction of the crack is to 

introduce a concept called current dipole density. To define this concept, the crack is first 

visualized as a three-dimensional figure whose thickness is eventually allowed to tend to zero 

(Figure 4.3). Before the thickness tends to zero, the crack has two faces, S^,S_. Let r be a 

position vector lying on either face. The electric field E( r) can be represented as 
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Figure 4.2. The coil can be set at any position down the length of the crack 
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E( r) = V0( r) + V X [f/(r )n] (4.1) 

where ^(r) and U { T )  are scalar fields defined on the crack faces 5^,5. and n is the unit 

vector normal to the crack faces. Let r^,r_ be two position vectors on S„S_ respectively, 

such that each position is a mirror image of the other, the plane of symmetry being the 

midplane between S^,S_ (Figure 4.3). Putting r =r^,r =r_ in Equation 4.1, 

E(r^) = V^(r^) + Vx[C/(r^)n] (4.2) 

E(r_) = V^(r.) + V x [£/(r_)n] (4.3) 

As the thickness of the three-dimensional crack tends to zero, the two faces of the crack, 

approach one another and define a two-dimensional figure, which is merely the tight 

crack of Chapter 2. The position vectors r+,r_ tends to a common limit, r. It is shown by 

Bowler [1] that there exists a finite scalar-valued function of r, p„(r), such that 

<^(r..)->^(r.) + -^^ (4.4) 
a 

Multiplying p„(r) by the unit normal vector n, we obtain a vector field defined on the tight 

crack. This vector field is termed the current dipole density. 

Properties of the Current Dipole Density 

The current dipole density possesses a number of properties that are useful not only in 

the standard eddy current method, but also in the photoinductive method. Therefore we shall 

describe these properties in some detail. 
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MID-PLANE OF SYMMETRY 

I 
I 

I ORIGIN 

CRACK 

INTACT| METAL 
t 

I 

Figure 4.3. A light crack is the limit of crack as the width tends to zero 
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p = 0 

CRACK 

P. 0 

Figure 4.4. A coordinate system for the test specimen 
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To describe these properties, it is convenient to choose a coordinate system such that 

the top surface of the test specimen is the .n- plane (Figure 4.4). The vertical plane 

containing the crack is yc plane. Let the positive r-axis point into the test specimen. The 

current dipole density possesses the properties (i)-(v) given below. 

(i) The dimension of the current dipole density is current divided by length. 

(ii) The current dipole density is a vector, and therefore can be projected into x,\\z 

components. 

(iii) The y,z components of the current dipole density are zero. Only the -component, 

, is nonzero. In general, the components of the current dipole density at a tangent 

to the crack are zero, while the normal component is nonzero. 

(iv) This X-component varies as a function of y and z. 

(v) Half the yz plane is embedded in the test specimen (Figure 4.5). This half can be 

divided into two parts ~ the cracked part and the intact part (Figure 4.6). The current 

dipole density is defined on the cracked part However, we may extend the domain of 

definition so as to include the intact part also: if (.y,z) is a point in the intact part, we 

set p, = 0. 

Important Equations Involving the Current Dipole Density 

The current dipole density appears as a factor in a number of equations that are useful 

only the standard eddy current method, but also in the photoinductive method. 

If (A:,>-,Z) is a point in the test specimen, the electric field is given by 

E(J^,>-,z)=Eo(-c,y,z)+ jjG^{x,y,z,Oy,z')p,(y',z')dy'dz' (4.5) 
crack 

or, equivalently. 

in not 

(i) 
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£^.(-V,V,:) = £o_ (-v.y,c)+ JJG, ix,y.z.O,y\z')p^{y',z')dy'dz', (4.6) 
iruvk 

E^Xx,y,z)= EQ,  J|G^ ix,y,z,0,y',z')p^{y',z')dy'dz\ (4.7) 
crack 

E ,ix,y,z) = E ^,{x,y,z)+ j j  G ^.ix,y,z , 0 ,y',z' ) p ^{/,z')dy'dz' (4.8) 
crack 

In Equations 4.5-4.8, Eq denotes the electric field in the absence of the crack. An 

explicit formula for it has been published by Dodd and Deeds [5, put a, = a, in 

Equation 75] and by Bowler [1, Equations 23-27]. The function G, is the first 

column of a dyadic (3x3 matrix) Green's function. An explicit formula for it has 

been published by Raiche and Coggon [20] and by Bowler [1, Equations 17-20 and 

the Appendix]. 

(ii) As the crack is an electrical insulator, the normal component ~ the x-component ~ of 

the current density is zero at any point (y, z) of the crack: 

JAO,y,z) = 0. (4.9) 

By Ohm's law, 

£,(0,y,z) = 0. (4.10) 

Combining Equations 4.6 and 4.10, 

Eo,(.0,y,z)+ jjG^^(0,y,z,0,y',z')Pjiy,z')dydz'=0. (4.11) 
ftuesxed ^crack 

(iii) The formula for the change in the impedance is 

Z - Z q = -  j jp/y,z)£O, (0,y,z)dydz (4.12) 
crack 
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Crack Reconstruction Procedure 

The reconstruction procedure described by Bowler. Norton and Harrison [2] is as 

follows. First, a guess is made as to the shape of the crack. Next, the corresponding to 

the guessed crack is determined by solving Equation 4.11. Then Equation 4.12 is used to 

calculate Z — Z^. This should agree with the measured value of Z-Z^, if the guessed crack 

is the correct one. 

It was noted earlier that it is possible to move the coil down the length of the crack, 

measuring Z-Z^ for each coil position. These are used as follows. For each coil position. 

Equation 4.11 is solved to obtain the p^ corresponding to the guessed crack, and this p^ is 

substituted in Equation 4.12 to compute Z — Z^. The computed Z-Z^ is compared with the 

Z - 2Q which was measured for that particular coil position. The two should be equal for 

each, and every, coil position, if the guessed crack is the correct one. 

If the measured and the computed Z-Z^ disagree, a new guess must be made as the 

crack and the steps mentioned above on the new guess. 

From the above outline, it is clear that the procedure to reconstruct the crack is an 

optimization procedure. The objective function is 

~ Z^ )nuasunil ~(Z — Zq )calculated (4^-13 ) 

all ^coil^ pautions 

while the unknowns to be determined are the shape and the size of the crack. The crack is 

considered to be the area between the y-axis and the curve z= fiy) in the yz plane (Figure 

4.6). Knowing the function / is equivalent to knowing the crack. The objective function 

just mentioned is therefore considered to be a functional whose argument is /. The details 

of the optimization are given by Bowler, Norton and Harrison [2]. 

The problem is inherently ill-posed for reasons given in Chapter 9. In the work of 

Bowler, Norton and Harrison [2], the ill-posedness was averted by adjoining the constraint 
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that the area of the crack should be as small as possible. This constraint adds one more term 

to the objective functional and is a stabilizing functional in the sense of Tikhonov [24, page 

59], 

Achievements of the Reconstruction Procedure 

The procedures given by Bowler, Norton and Harrison [2] have been used to 

reconstruct semielliptical cracks as well as cracks of fairly irregular shape. In the case 

studies presented by these authors, the crack sizes were on the order of millimeters. 
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CHAPTER 5. THE GREEN'S FUNCTION 

Scope of the Chapter 

This chapter describes the partial differential equations whose Green's function was 

mentioned in the Chapter 5. It sketches the main ideas behind the derivation of the Green's 

function, touching in particular on the gauge conditions. The chapter then quotes the formula 

for the Green's function. The chapter concludes with the near field asymptotic development 

of the Green's function. 

The Partial Differential Equations 

Let a cartesian coordinate system be adopted, and suppose that the half-space 0 is 

occupied with a metal, while the half-space z<0 is free space. Combining Maxwell's laws 

with the identity 

V x V x E  =  V ( V - E ) - V - E  (5.1) 

we obtain the following equations. In the metal. 

(V'+Jt-)E = 0, 

(5.2) 

where S  is the skin depth. In air. 

V^E = 0 (5.3) 
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Equation 5.2 is valid only if the metal is not cracked. Suppose that there is a crack. 

Let denote the conductivity of the crack and the conductivity of the metal. 

Define a new quantity as follows. If r is a position vector in the crack, 

^cnrrtainn^^^ ^cruci ^metal (5.4) 

Thus if the crack is modeled as an insulator, = 0 and CTcnrrtaum - ~^nuiai • If r is a 

position vector in the intact metal, 

O-™,v,„(r) = 0 (5.5) 

The formula 

o-(r) = ̂
metal ^ ^cnrrectum ( ) (5.6) 

gives the conductivity of any position vector r, whether ris in the crack or in the intact 

metal. The governing differential equation for the electric field can be shown to be 

(V^ + ̂ ^)E = -/a)A,cT„_„„„E (5.7) 

in the half-space z > 0. For the half-space z < 0, Equation 5.3 continues to be valid even if 

the metal is cracked. 

The Green's function for Equations 5.3 and 5.7 is a dyadic, or more simply, a 3 x 3 

matrix. The first column of the matrix defines a vector G,. In the metal, G, satisfies 

(V- + fe- )G, = -ij(U^^o(r - r') (5.8) 
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where i is the unit vector down the x axis. In air, G, satisfies 

V-G,=0 (5.9) 

It is this G, which was referred to in Chapter 5. 

Main Steps in the Derivation 

The derivation of the formula for G, is given in [1], [2], [20] and the references cited 

therein. As G, has the interpretation of being an electric field, it is legitimate to write G, 

terms of a vector potential and a scalar potential. The main steps in the derivation are: 

(i) To introduce a gauge. 

(ii) To write a set of partial differential equations for the vector potential. 

(iii) To write a set of partial differential equations for the scalar potential. 

(iv) To derive a Green's function, G,_^,^_p,„, for the vector potential. 

(v) To use the gauge condition and the function to derive the formula for the scalar 

potential. 

(vi) To use the formulas for the vector potential and the scalar potential derived in (iv) and 

( v )  t o  o b t a i n  G , .  

Owing to the length of the derivation, we shall not cover it here. However, we shall mention 

that the gauge is neither Coulomb's nor Lorentz's. Instead it is the equation 

(5.10) 

where A,^ denote the vector and scalar potential respectively. 
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The Formula for G, 

The formula for the a-component of G, is given below; 

where 

G , = -
4;rcr 

(5.11) 

7; = 

r,= 

7-3 = 

exp(/X'/;) ^ 3 X -  ^  
1 

V n 

exp(ikr,) 

r," 

Ar'Z, 

r, 

•) 

V r: J 

^3Y- ^ 
— - I  

V 

[S-Sikr^-k'r^) 

+ I,K, 
( 2 X ^  3 Y '  ^  
—  T — I  

I P . 

ik 
T. = -hK, 

^2 

ik 
T.=-I,K, 

^2 
X = x'-x 

y= y ' - y  

Z,=fz'-zl 

Z, = z' + z 

i - i  
r, 

l3 

k'y% 
— - I  

yv 'i' . 

V -51/2 > 

V ' 2  A 
- 1  

k-y% 

r> 

p=yl(x'+y') 

f\=ylp^ + Z; 

r,=ylp' + Z; 

(5.12) 

The quantities /q,/, are the modified Bessel's functions /{,,/, with argument 

J 1 A 
—y/cofi<j(r, - z,)exp -~i7t . The quantities Ko,Kj are the modified Bessel's functions 

KQ, Ky with argument ^yjc0fj.<j{r^ + C3)exp^--^/;r 
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The formula for the >• component of the Green's function is given below: 

G , . =  ^y[5,+53 + 53 + 5'4-H55] 

Ana 
(5.13) 

where 

^ exp(ikr,)f^ 
S, = ;  [3-3lkr^-k r, ), 
' '  i' 

5,, = -22^{3-3ftr,-iv,'), 

fc'Z', 
^3= . 

r, 
I,K, 

f 1 2 \ 
3.4 

P' 
-3/o/:Q 

ik 

2 

ik 
S, = --I,K, 

3 1--^ 
I <'2 J 

r, 

+ k-Z ,r, 

-k%r^ 

(5.14) 

The formula for the z component of G, is given below: 

(5.15) 

where 

/ = • 

2 
A(0) = exp(iA:r^ )[3 -  3ikr -  k-rj] 

(5.16) 
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The Near Field Asymptotic Development 

If is small in comparison with the skin depth, all the factors of the type 

kr^.kX,kY,...-drQ small in comparison with 1. Therefore it is safe to make the 

approximations 

expiikr,) = I 
7 2 , (5-17) 
3 — 3ikr^ — ^ 1 =3 

and so on. The formulas for Cr,,,G,, can be quoted as follows: 

a . =  1 1 

4K<y 
— - 1  

V 1" J 
3XY 

(5.18) 
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CHAPTER 6. THE PHOTOINDUCTIVE METHOD 

Scope of the Chapter 

This chapter first describes some of the circumstances surrounding this dissertation 

problem. Next it explains why it is useful to measure the square of a particular electric field. 

The chapter then describes the operation of the photoinductive method, showing that a 

photoinductive measurement yields what is essentially the square of the electric field. By 

way of interest, the chapter points out a delicate feature of the measurement. The chapter 

closes by noting an adjustment necessary to achieve fine spatial resolution. 

Background 

The photoinductive method is being developed at the Center for Nondestructive 

Evaluation and is intended to detect and characterize very small cracks whose size is on the 

order of 0.1-0.5 mm. This project has both an experimental and a theoretical component. 

The experimental side of the work has been described by Tai and Moulder [24]. The 

experiments reported by these authors are concerned with small cracks at the periphery of 

bolt-holes (comer cracks) and sensitivity has been demonstrated for cracks as small as 0.175 

mm. The present thesis summarizes the state of the theoretical work, which is primarily 

concerned with crack characterization, i.e., the problem of determining the shape and the size 

of the crack, once the crack has been detected. 

In this chapter, we will describe the use of the photoinductive method for cracks in 

bolt-holes and thus maintain contact with the experimental work. However, this geometry 

will prove to be too difficult for a complete analysis of the problem. Consequently, the rest 

of the thesis will focus on a simpler geometry, namely, a surface-breaking crack in a thick 

metal plate ~ a problem of considerable technological interest in its own right. 
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The Sensitivity of E^o Cracks 

Suppose, for instance, that the test specimen is a metal plate with four bolt holes 

(Figure 6.1), such that three bolt holes are in good condition, while one bolt hole has a crack. 

Let us consider how the photoinductive method characterizes the crack. 

One of the items in the photoinductive apparatus is an air-core coil of circular cross-

section (Figure 6.2). This coil is designed and manufactured in the same way as the coil used 

in the standard eddy current method. The coil is inserted into one of the bolt holes. 

The coil is connected to an alternating current source whose current is Jll cos (ot, 

where / is a constant and the frequency a is adjustable. Due to this current, the coil causes 

an eddy current to flow in the test specimen. The path of the eddy current is sketched in 

Figures 6.2 - 6.3. Let us compare these figures. 

CRACK 

Figure 6.1. A test specimen with bolt holes 
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CRACK 

VIEW ON 'X* 
EDDY 

CURRENT 

BOLT HOLE 

Figure 6.2. A coil is inserted into a crack-free bolt hole 
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CRACK 

VIEW ON 'X' 

EDDY 

CURRENT 

BOLT HOLE 

Figure 6.3. The coil is inserted into a cracked bolt hole 
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In Figure 6.2, the coil is inserted a good bolt hole, and the eddy current flows in a 

particular set of paths. In Figure 6.3, on the other hand, the coil is inserted into the bolt hole 

with the crack, and the eddy current in the test specimen is constrained to flow around the 

crack. This is a consequence of assumption (iii) of Chapter 2, which says that the crack is an 

electrical insulator. 

Let J denote the current density of the eddy current. Figures 6.2-6.3 show that J is 

sensitive to the presence or absence of the crack. By Ohm's law, the electric field, E is also 

sensitive to the presence or absence of the crack. Squaring the electric field, we expect that 

E' is sensitive to the presence or absence of the crack. Conversely, we hope that if 

measurements of E" at the surface of the test specimen are available, it will be possible to 

reconstruct the crack. As we shall see below, these measurements of E" are exactly what the 

photoinductive method provides. 

E' is in the Frequency Domain 

One point should be clarified at this juncture. In electromagnetic theory the electric 

field E can be expressed either in the time domain or in the frequency domain. Accordingly 

E is a vector whose three components are real or complex. Accordingly, 

E" = £"^" +£,"+£: is a real scalar or a complex scalar. In the photoinductive method, only 

the frequency domain representation is used. What the photoinductive method measures is 

the complex scalar E'. 

The Role of the Laser 

So far we have only spoken of one item in the photoinductive apparatus, the coil. We 

now examine the other items. Let one set of lines be drawn be drawn parallel to a tangent to 

the bolt hole (Figure 6.4), and another set of lines be drawn at right angles to the first set. The 



www.manaraa.com

41 

CRACK 
EDDY 
CURRENT 

X 

BOLT 
HOLE 

COIL 

SCAN PLAN 

Figure 6.4. A scan plan around the periphery of a bolt hole 
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intersection of the two sets of lines gives rise to a set of points. It will be convenient to use 

two technical terms for these points -- laser focus points and scan points. 

We pick any one of these points, and focus a laser on it (Figure 6.5). As a result the 

following parameters change in a related way: 

(i) The temperature at the laser focus point (or scan point) changes from when the 

laser is off to 7"„„ when the laser is on. 

(ii) Since the conductivity of a metal depends on the temperature, the conductivity 

changes from to (T„„ . 

(iii) We saw that the current density of the eddy current, J, is altered by the presence of 

the crack. In addition, the change in the conductivity from a„g to ct„„ also causes J 

to change from to , as the current tends to avoid a region of low conductivity. 

(iv) The electric field changes from to E„„. 

(v) The complex power consumed by the test specimen changes. 

(vi) The complex power supplied by the current source changes. 

Why a Photoinductive Measurement is a Measurement of E~ 

Let the voltage and the current of the current source be 42U C0S,{(0t + 6) and 

• J 2 1 c o s { ( o t )  r e s p e c t i v e l y .  T h e  c o m p l e x  p o w e r  s u p p l i e d  b y  t h e  c u r r e n t  s o u r c e  i s  U I .  

According to (vi) above, the power UI is different when the laser is off and when the laser is 

on. By the definition of the current source, the factor I cannot change. Therefore it is the 

voltage U that must change. Let it change from to U„„ • 

It can be shown that (Appendix A) for small - T„g, 

^on J (6.1) 
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Figure 6.5. The apparatus of the photoinductive method 
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where a denotes the thermal conductivity of the metaJ and V is the volume of the heated 

region in the test specimen. This formula may be termed a Bom approximation as terms of 

the order - 7,^^ )' are neglected. From this formula. 

Moreover the quantity 

-I 
(6.3) 

is independent of whether the inspected bolt hole is the one with the crack. This quantity can 

be determined by a calibration. With the calibration done, we can say that is directly 

proportional to U^^-U„g. To measure is to measure Elg. In this way a 

photoinductive measurement is equivalent to a measurement of E". 

Delicacy of Measuring 

The naive approach to measuring U„„ - is to measure the voltage twice — once 

with the laser off, getting U„ff and once with the laser on, getting . Subtracting, we get 

[/„„ - U„g • However the measurement error in U„ff or in is itself of the order of the 

difference U„„ - , and, therefore, this approach is not accurate. 

The practical approach is to the operate the laser in a chopped mode, so that its light 

flashes on and off at the laser focus point (or scan point) at some frequency. Consequently 

the voltage U becomes an almost periodic function of time, with a component at the laser 

chopping frequency and a component at the frequency of the current source. The former 

component alternates between U„g and Filtering this component, we obtain an accurate 

measurement of - U^,g. 
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Adjustments to Achieve Fine Spatial Resolution 

We close this chapter by drawing attention to the heated region shown in Figure 6.5. 

For the photoin>lui.tive measurements to have a meaning, it is necessary that the electric field 

E,,^ should be practically constant in the heated region. This condition will be satisfied if the 

user ensures that the heated region is small compared to the inner radius of the coil. Let us 

consider what the user can adjust to meet this requirement. 

The size of the heated region depend on the thermal skin depth. The concept of the 

thermal skin depth states that if heat impinges on a point P, the temperature at another point 

P' falls off exponentially as the distance PP' increases. A formula for the thermal skin 

depth has been quoted by Moulder et a/ [15, Equation 6]: 

thermal 

((oLp(x- + p-) 
y, (6.4) 

were denotes the thermal depth, is the (radian) frequency of chopping, a is the 

thermal conductivity of the metal and ^ is a coefficient for the heat emission from the test 

specimen to the environment. 

This formula shows that the thermal conductivity of the metal and the laser chopping 

frequency are among the factors that determine the thermal skin depth, and, hence, the size of 

the heated region. An additional factor is the laser beam diameter. If possible, the user 

should adjust these factors to keep the heated region small. 

The thermal conductivity of the metal cannot be adjusted. The laser chopping 

frequency can be adjusted. The laser beam diameter can be adjusted in principle by having 

several interchangeable lenses, and introducing one or other of these lenses in the path of the 

laser beam. In short, the user should choose the laser chopping frequency and the lens such 
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that the heated region is small compared to the inner radius of the coil. Then only does the 

photoinductive nieasurement achieve a fine spatial resolution. 
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CHAPTER 7. AN IDEA FOR ATTACKING THE PROBLEM 

Scope of the Chapter 

This chapter first describes a test specimen with a simple geometry. Next it presents 

the photoinductive measurement as a function of the current dipole density. The chapter then 

considers whether it is meaningful to invert this functional relationship so as to determine the 

current dipole density from the photoinductive measurement. The chapter shows why it is 

worthwhile to determine the current dipole density. The chapter concludes by pointing out 

an additional equation, embodying the electrical insulating property of the crack, that must be 

satisfied. 

A Test Specimen with a Haif*Space Geometry 

The test specimen in the previous chapter was a metallic plate with four bolt holes. 

But in this chapter, we shall discuss a test specimen with a simpler geometry. 

This test specimen has the geometry of a half-space without bolt holes (Figure 7.1). 

The top surface has a small, tight surface-breaking crack obeying the assumptions of the tight 

crack model of Chapter 2. Taking a vertical cross-section, we obtain a complete view of the 

crack (Figure 7.1). The dissertation problem is to reconstruct this complete view 

nondestructively, without physically taking a vertical cross-section. 

Set the eddy current coil as shown in Figure 7.2, and focus the laser on the scan 

points. The photoinductive method gives us measurements of at the scan points. Using 

these measurements, we are to reconstruct the complete view of the crack. 
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3D PERSPECTIVE VIEW 

VIEW ON SECTION YY 

INTACT METAL CRACK 

Figure 7.1. A test specimen with the geometry of a half-space 
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I /i 
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Figure 7.2. The scan plan for a half-space test specimen 
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A Formula for Ei;„ 

The geometry shown in Figures 7.1-7.2 is identical to the one shown in Figures 4.1-

4.3. Indeed when the laser is turned off, the photoinductive method reduces to the standard 

eddy current method. Therefore the quantity E„^ in the photoinductive method is merely the 

electric field E in the standard eddy current — the same electric field for which we quoted 

Equation 4.5. Therefore 

Eo(x, y,c)+ J| G^{x,y,z,0,y,z')p^{y\z')dy'dz' = E„^ (.r,y,c) (7.1) 
crack 

Squaring, 

Efl (•*. + IJg , (x, y, z,O.y', z)p, {y',z )dy'dz 
crack 

= E:Ax,y,z) (7.2) 

The right-hand side is precisely the photoinductive measurement. 

The Knowns and the Unknowns in Equation 7.2 

In the left-hand side, £„ and G, are known, as analytical formulas for them have 

been published, while the current dipole density, , is unknown. In the right-hand side, the 

quantity is known from the photoinductive data. Another unknown is the domain over 

which the double integral must be computed, since that domain defines the crack that is to be 

reconstructed. Thus there appear to be two unknown items. 

However a simple manipulation turns the domain of the double integral into a known 

item. We change Equations 7.1-7.2 as follows: 

Eo(j:,y,c)+ J i/y'|i/z'G|(A:,y,z,0,y',z')/J,(y',z')= E„^(jc,,v,c) (7.3) 
— 0 
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E„(.r. y. z) + Ji/y'JcJz'G,(x, y. c.O, y'. z')p,( y'. r') = ( a", y. c) (7.4) 

These equations differ from Equations 7.2-7.3 in that the domain of the double integral has 

been changed from the crack to the entire cross-section, i.e., to the half of the yz plane that 

lies in the metal (Figure 7.1). The change of the domain is legitimate because, according to 

the property (v) in Chapter 4, is zero on the intact part. 

Now that even the domain of the double integral is known, the only unknown is the 

current dipole density . We therefore hope to determine . 

Why it is Useful to Determine the Current Dipole Density 

Assuming that this hope of determining p^ is realized in practice, we divide the 

points (y,z) of the cross-section containing the crack into two sets, I and C, as follows: 

Using the property (v) of Chapter 4 again, C can be identified as the cracked region(s), while 

I is the intact region(s). This is the importance of the quantity p^. 

An Additional Equation 

A simple equation can now be deduced. For all points (>', z) in the cross-section. 

/ = the set of points {y, z) such that p^ (>*, z) = 0. 

C = the set of points (y,z) such that Pjiy,z) ^0-

(7.5) 

(7.6) 

p , { y , z )  £ o . ( 0 ' v , z , 0 , > ' ' , 2 ' ) p ^ ( / , 2 ' )  = 0 .  ( 7 . 7 )  
0 
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To deduce this equation, we note that the factor in the square brackets is. by Equation 4.6, 

merely £,(0,_v,z)- Proving Equation 7.7 is therefore equivalent to proving that 

p, (0, y, z)E,{0,y,z) = 0. (7.8) 

Any point (y, z) must belong to either / or to C. If it belongs to /, must be zero by the 

property (v) of Chapter 4, and Equation 7.8 is satisfied. If, on the other hand, (>•, z) belongs 

to C, E^{0,y,z) must be zero by Equation 4.10, and Equation 7.8 is again satisfied. 

Therefore Equation 7.7 is also proved. 

Any numerical method to determine p^ must ensure that Equation 7.7 is satisfied. 

Only then is it safe to identify the set C as the crack region(s). 
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CHAPTER 8. FIRST SET OF NONLINEAR EQUATIONS 

Scope 

This chapter essentially reformulates Equation 7.4. First it changes the domain of the 

double integral in Equation 7.4 from an infinitely large figure to a finite rectangle. Next it 

introduces the notion of a pixel, similar to the pixel of a television screen. This notion leads 

to certain changes in the double integral. Finally it introduces a notation for the items needed 

to specify a photoinductive measurement. This further leads to further changes in the double 

integral. 

Reducing the Domain of the Double Integral 

Equations 7.3-7.4 contain double integrals computed over an infinitely large domain. 

To make the computations manageable, we shall suppose that the crack is known to lie in a 

given rectangle OABC (Figure 8.1). Therefore the domain of the double integrals need not 

be the entire cross-section, but merely the rectangle OABC. With this. Equations 73-1A 

change into 

Eo( j:,>',z)+ jdy jdz'Gi(x,y,z,0,y',z')p^(y',z')=E„^(x,y,z) (8.1)  
0 0 

.'A 

Eo(Jc, >',z)+ j dy'j dz'G,ix, >-,z,0, y',z')p^{y',z') 
0 0 

= E' (x,y,z) (8.2) 

where denotes the y coordinate of A and Zg denotes the z coordinate of B. 
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X 

3D PERSPECTIVE VIEW 

z 

VIEW ON SECTION YY 

INTACT METAL CRACK 

^ S 
Figure 8.1. The crack is postulated to lie inside a given rectangle OABC 
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Discretizing the Rectangle OABC into Pixels 

The rectangle OABC is divided into squares (Figures 8.2), just as a television screen 

is divided into pixels. Since the pixels of a television screen can depict even a complex 

figure, the squares of the rectangle OABC should be able to depict tight cracks with a 

complex shape. We shall use the term pixels for the squares of OABC to emphasize this 

depicting ability. 

Let the pixels be numbered in the same way as the elements of matrix. Thus the pixel 

i,j is the pixel in the /th row and the jlh column. We shall suppose that each pixel is so 

small that {y, z) is practically a constant in it. Let p, (y, z) = p, j for all points (y, z) that lie 

in the pixel i,j. Equations 8.1-8.2 are equivalent to 

where m is the number of rows of pixels in the rectangle OABC (Figure 8.2), and n denotes 

the number of columns. 

A measurement is fully described by providing the following particulars: 

(i) The xy coordinates of the laser focus point (or scan point). Note that the z 

coordinate of the laser focus point is always zero, as the point lies on the top surface 

of the lest specimen which is nothing but the xy plane. 

(ii) The y coordinate of the axis of the coil. Note that we are planning to move the coil 

only up and down the y axis only - never off the y axis. In contrast, the laser will be 

moved up and down both the x and y axes. 

EqCj:.y. zJ + ̂  ̂Pi_j JJG,(x. y, z. 0, y'.z )dy'dz = E„^(x. y,z) (8.3) 
' square _ i, J 

m n 

square JJ 

A Notation for the Particulars of a Measurement 
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INTACT METAL CRACK 

Figure 8.2. The bounding rectangle OiABC is divided into pixels 
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(iii) The frequency of the current source. We are contemplating that the frequency is 

adjustable. 

(iv) The value of obtained in the measurement. 

These particulars will be discussed further in Chapters 14-15. In this chapter, we will merely 

introduce the following notation: 

(i) A = the number of photoinductive measurements 

(ii) ) = the xy coordinates of the laser focus point in the ath measurement, where 

or is a index that runs from 1 through A 

(iii) /„ = the frequency of the current source in the ath measurement 

(iv) ;r„ = the value of obtained in the ath measurement. 

Rewriting Equation 8.4 with the Foregoing Notation 

With this notation. Equation 8.4 is equivalent to 

^ m n V 

xquare^ij . 

Since the index a runs from 1 through A , this equation actually amounts to a set of A 

equations. 

This set is the first set of nonlinear equations that our numerical procedure needs to 

solve. 
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CHAPTER 9. THE SECOND SET OF NONLINEAR EQUATIONS 

Scope 

Just as Chapter 8 reformulated Equation 7.4 in terms of pixels, this chapter 

reformulates Equation 7.7 in terms of pixels. Next it discusses the adequacy of the resulting 

equation. Finally it reformulates the sets /' and C' in terms of pixels. 

Rewriting Equation 7.7 in Terms of Pixels 

Equation 7.7 must be satisfied at all points of the cross-section containing the crack. 

The cross-section can be split into two regions ~ the region inside rectangle OABC and the 

region outside the rectangle OABC (Figure 9.1). Equation 7.7 is automatically satisfied in 

the region outside the rectangle OABC, as p^. is defined to be zero there. Therefore it is 

sufficient to ensure that Equation 7.7 is satisfied in the region inside the rectangle OABC. 

But there are infinitely many points inside the rectangle OABC. It is probably 

impossible to ensure that Equation 7.7 is satisfied for all these points. We adopt a more 

modest objective: let us merely ensure that Equation 7.7 is satisfied at the center of each, and 

every, pixel inside the rectangle OABC. If -) denote the yz coordinates of the center 

of the pixel ij, our more modest objective reduces Equation 7.7 to 

Pu + iio„(.O.Y,„.Z,,,0.y'.z')dy'dz' 
r=I xs] Square^r.s 

= 0(9.1) 

Since the index / runs l...m and the index j l...n, this equation amounts to a set of mn 

equations. This set is the second set of nonlinear equations that our numerical procedure 

needs to solve. 
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PIXEL 2,4 

Figure 9.1. Er\forcing Equation 9.1 is equivalent to 
enforcing Equation 7.7 at the centers of the pixels 
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By satisfying Equation 9.1. we satisfy Equation 7.7 only at the centers of the pixels, 

and not necessarily at all the points of the cross-section. Therefore it is worthwhile asking 

whether this will be prevent us from reconstructing the crack. If all the pixels are small, their 

centers will define a dense grid of points at which Equation 7.7 will be satisfied. In the limit 

that the pixel size tends to zero, the grid will be so dense as to cover the cross-section, and 

Equation 7.7 will be satisfied everywhere on the cross-section. Therefore, with a very small 

pixel size, satisfying Equation 9.1 ~ satisfying Equation 7.7 at only a grid of points, rather 

than everywhere ~ should not prevent us from reconstructing the crack. 

Further confidence comes from noting that Equation 9.1 is similar to an equation used 

by Bowler [1, Equation 32]. 

Reformulating the Sets I' and C in Terms of Pixels 

Our numerical procedure must solve Equations 8.5 and 9.1 for the unknowns 

where i = and j = \...n. This done, the pixels i,j (/=l...m and j = \...n ) are divided 

into two sets, /' and C. according to the following criteria: 

/' = the set of pixels i,j such that p,.y is zero. (9.2) 

C' = the set of pixels i,j such that p, ^ is non-zero. (9.3) 

The sets /' and Care equivalent to the sets I and C defined in Equations 8.4-8.5, but, given 

that we have introduced the notion of a pixel, are more convenient to use. The crack to be 

reconstructed is merely the set C. 
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CHAPTER 10. ILL-POSEDNESS 

Scope of the Chapter 

This chapter examines whether the Equations 8.5 and 9.1 are well-posed. The chapter 

first presents the definition of ill-posedness. Next it gives an intuitive explanation, based on 

the skin effect, to show that the dissertation problem is ill-posed. Then, using the theory of 

Fredholm equations of the first kind and the Riemann-Lebesgue lemma, it notes that ill-

posedness is connected to the smoothing of rapid oscillations. The chapter presents an 

analogy from signal processing. It also shows that compact operators tend to smooth out 

rapid oscillations. The chapter shows that Equation 8.5 particularly has the structure 

indicative of smoothing of rapid oscillations. The chapter closes with the topic of 

regularization. 

Ill-Posedndess 

The concept of ill-posedness can be approached by first defining well-posedness. A 

system of equations is said to be well-posed if: 

(i) A solution exists. 

(ii) The solution is unique. 

(iii) The solution changes only a little if the right-hand sides or the coefficients of the 

equations are altered slightly to reflect manufacturing tolerances and measurement 

errors. 

The absence of well-posedness is ill-posedness. 

Intuitive Explanation Why Equations 8.5 and 9.1 are Ili-Posed 

The Green's function occurring in Equation 8.5 possesses an exponentially decaying 

factor of the form 
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where S denotes the skin depth, r the position vector of the field point and r' the position 

vector of the source point. To interpret this observation, suppose that there is a crack at r'. 

The current dipole density at r', being nonzero, sets up an electric field at r, which decays as 

the distance |r - r'( increases. This may be viewed as an instance of the skin effect. 

Suppose that r is a point on the top surface of the metal and that |r - r'| is very large. 

The current dipole density at r' can only contribute a small term to the electric field at r, and 

hence to a photoinductive measurement — the square of the electric field — at r. Therefore a 

photoinductive measurement at r is practically insensitive to the current dipole density at r'. 

Conversely, the current dipole density at r' is not well-determined from a photoinductve 

measurement at r, if the distance |r - r'| is very large. 

Consider a crack whose depth is much greater than its surface length. If r' is a 

position vector in the deepest part of the crack, Ir-r'l cannot but be very large, as r is 

constrained to lie on the top surface. Therefore the current dipole density at r' deep down 

the cross-section is not well-determined from any photoinductive measurement. Therefore 

the deepest parts of the crack are not reflected in the photoinductive measurements. It would 

be impossible uniquely to reconstruct the deepest parts of the crack, meaning that the 

dissertation problem is ill-posed. 

Ill-Posedness of A Fredholm Equation of the First Kind 

The intuitive argument presented above may be supported by another argument which 

is described next. A Fredholm integral equation of the first kind is an equation of the form 

h 
(10.1) 

a 
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where the kernel, A'(.v,,v'). the limits of the integral, a,b. and the right-hand side. are 

given, while the unknown function /(A*') is to be determined. For simplicity, we suppose 

that the kernel Ar(.v,.r') is continuous, apart from an integrable singularity. 

Suppose that f{x') = is an exact solution to Equation 10.1: 

h 
^ K{,x,x)f^{x')dx'= g{x) (10.2) 
a 

Then for sufficiently large values of the integer «, f{x') = f^{x') + cosinx') comes very 

close to being a solution to Equation 10.1: 

h 

J Ar(x,x'){/",(jr') +cos(/ir')}d[r' = g { x )  (10.3) 
a 

This follows from the Riemann-Lebesgue lemma discussed below. 

The Riemann-Lebesgue Lemma 

The Riemann-Lebesgue lemma says that for sufficiently large integers n 

h 
I K{x,x')cos(nx')dx'=0 (10.4) 
a 

the relation becoming exact in the limit as n tends to infinity. It is easy to see why this 

lemma is true if the kernel is continuous. 

Suppose that the range of integration [a,b] is partitioned into pieces of the length of 

the period of cosinx'). 
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h 
J/r(.v..r')cos(/2.v')iif'= ]^jAr(.r,x')cos(n.r')<ir' (10.5) 

all  ̂ fiiece.s 

For large n, the period of cos(nx') becomes very short, so that each piece of the interval 

[a,b] is very short. Suppose that the kernel is continuous: it will behave approximately like 

a constant function of x' in each piece. Therefore, for an approximate calculation, the kernel 

can be taken out of the integral as a constant factor in each piece of the interval [a,b], leaving 

cos{nx') in the integrand. 

Integrating this over each piece — essentially one period of cos{nx') — gives zero. Therefore 

the integral is practically zero on each piece. Summing over all the pieces in the interval 

[a,b], the integral over [a,Z?] is also practically zero. 

If the kernel has an integrable singularity, it cannot be continuous everywhere; all the 

same, the statements just made are still valid. 

The Riemann-Lebesgue lemma shows the truth of (the approximate) Equations 10.3-

10.4. The implication is as follows. 

In view of manufacturing tolerances, measurement errors and the finite precision of 

computer arithmetic, the coefficients and the right-hand sides of Equation 10.1 are known 

only with a certain error. Therefore it is appropriate to seek an approximate solution to 

Equation 9.1, rather than an exact one. Once we decide to seek approximate solutions, both 

f(x') = fj(x') and f(x') = f,(x') + cos(nx') (for all large integers n) must be accepted as 

solutions. As these solutions are widely different. Equation 10.1 cannot but be ill-posed. 

j K{x,x') cos(nx')dx' ~ K{x, x') jcos(nx')dx' (10.6) 
tach^piece 

Implications for the Fredholm Equation of the First Kind 
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Smoothing of Rapid Oscillations 

The graph Y = /,(JC') + COS(RX') looks like the graph Y = /,(JC') with a high frequency 

oscillation superimposed. Yet when the operations of multiplication by K{x,x') and 

integration over [a,b] are performed, both functions give rise to practically the same output 

gix). This fact shows that if an unknown function is multiplied by a reasonably well-

behaved kernel and integrated, there is an effect of smoothing out any rapid oscillations that 

may be present in the unknown function. The corresponding integral equation is 

automatically ill-posed. 

An Analogy from Signal Processing 

An analogy from signal processing may be presented. Smoothing out rapid 

oscillations amounts to low-pass filtering. The function f{x') can be conceived as the input 

to a low pass filter, while the function ^(A:) is the output. Solving Equation 10.1 is akin to 

reconstructing the input to a low pass filter from the output. Therefore Equation 10.1 is ill-

posed. 

Compact Operators and Smoothing of Rapid Oscillations 

In some books [9, Theorem 15.4, page 224], ill-posedness is associated with compact 

operators. Evans has remarked that, thinking intuitively, a compact operator is an operator 

that smoothes out any rapid oscillation in the input function [8, page 468, text between 

Equations 20-21]. To elaborate on this remark, suppose that 

(10.7) 

is a complete orthonormal system of functions. Subject to certain technical conditions, any 

function /(x) can be expanded in an infinite series of the form 
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/ (X)  =  a , / , (A- )  +a / ,  (A-)  +  f l , / ,  (A- )H-  •  •  (10.8) 

Applying a compact operator F to both sides of Equation 10.8, 

rf{x) = ̂ [aJ^ (x) +(3/, (X) + a,fj(x)+- • •] (10.9) 

Let us stop the infinite series in Equation 10.7 after , say, the lih term, and the infinite series 

in Equation 10.8 after, say, the m th term. This yields the following approximations: 

The characteristic property of a compact operator is that, independent of the approximation in 

Equation 10.10, the approximation in Equation 10.11 can be made good by having a 

sufficientiy large number m [23, Vol. V, Art. 134, pages 402-405]. In short, the terms with 

subscripts larger than m can be discarded with little error if the intention is to apply the 

compact operator F. 

The subscript has the following significance. Common examples of complete 

orthonormal systems, such as the trigonometric functions and Chebyshev functions [10], are 

characterized by the property that they oscillate rapidly if the subscript is large. Thus we 

have the heuristic rule that the functions listed in Equation 10.6 oscillate rapidly as the 

subscript increases. To discard the terms with subscripts greater than, say, m is to discard 

rapidly oscillating terms. Thinking intuitively, compact operators smooth out any rapid 

oscillation in the input function. Therefore the theory of ill-posedness based on compact 

operators is really a theory about the smoothing of rapid oscillations. 

/(jc) = a,/| (X)+a/2(x)+-• •+a,/,(x) 

Ff{x) = F[a/,{x) +a/,{x)+---+ajjx)] 

(10.10) 

(10.11) 
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Similarity of the Fredholm Equation to Equation 8.5 

Equation 8.5 contains an integral in which the Green's function G(r,r') is like the 

kernel K(x,x') and the current dipole density p,(y',z') is like the unknown function /(.v'). 

Just as the rapid oscillations (if any) in f(x') are smoothed out, so are the rapid oscillations 

(if any) in the current dipole density p^{y',z'). Therefore the integral in Equation 8.5 can 

only reflect the coarse variations in the current dipole density p^iy\z'). 

After adding the term Eq to the integral and squaring, we obtain the left-hand side of 

Equation 8.5; this will reflect the coarse variations in the current dipole density {y'rJ). 

Consider two cracks such that p,i^y\z')= p^^{y\z') for one crack and 

PSy'yZ')= p^^{y',z') for the other. Suppose that the difference p^^-^ rapidly 

oscillating function of y',z', e.g., cos{n(/+2')} with a large integer n. The operation of 

multiplying by the Green's function and computing the double integral will smooth out the 

rapidly oscillating difference. Therefore both cracks will give rise to practically the 

photoinductive measurements E". When we use photoinductive measurements E" to 

reconstruct the crack, we should obtain both meaning that we should reconstruct 

both cracks, not merely one. Moreover these current dipole densities, p„x,p^-,, are widely 

different. This is the fundamental reason for thinking that the problem is ill-posed. 

Lack of Uniqueness in a Practical Sense 

The discussion just presented shows that Equations 8.5 and 9.1 should be considered, 

for practical purposes, as equations that have multiple solutions. One of the multiple 

solutions will be the crack actually present in the given test specimen. But we cannot tell 

which one, and so Equations 8.5 and 9.1 are only partially adequate for reconstructing the 

crack. 
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Regularization of Ill-Posed Problems 

Tikhonov and Arsenin [25] suggest that ill-posed equations can be supplemented with 

an additional equation or constraint in an effort to remove ill-posedness. Such equations or 

constraints are said to regularize (or stabilize) the problem. In the work by Bowler, Norton 

and Harrison [2], an additional constraint was introduced: the area of the crack should be a 

minimum. Another example of such an constraint is that the perimeter of the crack should be 

a minimum. 

Tikhonov and Arsenin [25] invoke the concept of compactness in theorems on 

regularizing ill-posed problems. This shows that regularizing an ill-posed problem is, at 

bottom, connected to the smoothing of rapid oscillations. 
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CHAPTER 11. AN OBJECTIVE FUNCTION 

Scope 

This chapter shows how Equations 8.5 and 9.1 can be turned into an objective 

function for minimization. The chapter concludes by indicating briefly how ill-posedness 

manifests itself in the minimization exercise. 

An Objective Function 

Equations 8.5 and 9.1 are nonlinear equations. One way to solve them is to convert 

them into an objective function which is to be minimized. Let denote the difference 

between the left-hand side and right-hand side of Equation 8.5: 

Here the index a runs from 1 through A , and for each a, should be zero. Let ^ 

denote the left-hand side of Equation 9.1: 

(11.1) 

r-l Satiiire r.x 

(11.2) 

Here the indices i = l...m and j = l...n and for each i,j, N,, should be zero. 

Consider the quantity 

A m n 

(11.3) 
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Making this zero is equivalent to satisfying Equations 8.5 and 9.1. On the other hand, if 

Equations 8.5 and 9.1 are not satisfied, then F>0. Therefore F is a minimum when 

Equations 8.5 and 9.1 are solved. 

The plan of solving Equations 8.5 and 9.1 is to think of F as the objective function to 

be minimized, with p, i = l...m and j = \...n, as the unknowns. After the minimization is 

done, we form the sets I' and C described earlier and report C as the crack which was to 

be reconstructed. 

How Ill-Posedness Manifests Itself 

According to Chapter 10, ill-posedness means that for practical purposes. Equations 

8.5 and 9.1 should be regarded as equations with nonunique solutions. Nonunique solutions 

emerge as multiple minima of the objective function. We will find in Chapters 16-17 that 

there are alternative ways to generate multiple minima: 

(i) We can add a small, random quantity to the photoinductive data to simulate noise and 

repeat the optimization. 

(ii) Adopting a Monte Carlo algorithm for the optimization, we can change an input known 

as the seed to the Monte Carlo algorithm and repeat the optimization. 

The different minima corresponding to different cracks that give rise to practically the same 

photoinductive data. 
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CHAPTER 12. HEURISTIC ESTIMATE FOR 
THE CURRENT DIPOLE DENSITY 

Scope of the Chapter 

This chapter first explains the need for a heuristic estimate for the current dipole 

density of a pixel. Next it provides a heuristic estimate, together with the rationale. Finally it 

analyzes the heuristic estimate for the qualitative behavior of the current dipole density. The 

chapter closes with a comment on what the user can adjust to make each photoinductive 

measurement useful. 

In Chapter 10 we showed that solving Equations 8.5 and 9.1 could be reduced to an 

optimization exercise. Therefore the computer program we would be writing would amount 

to an optimization routine. A number of optimization routines have been described in the 

literature. In this dissertation, we choose the Monte Carlo optimization routine [4], as it does 

not require us to differentiate the objective function with respect to the unknowns. The 

Monte Carlo routine has a good chance of succeeding if we can provide a heuristic starting 

point for the p, /s that is close to the actual answers. 

Our Heuristic Estimate 

Numerical experimentation showed that the following formula gives a good starting 

point. For each ij, there are two alternatives: 

Need for a Heuristic Estimate 

either ^ = 0, (12.1) 

(12.2) or  A. ,  =  -£ox(0 ' J ' , \ \G^ ,{0 ,Y, , ,Z ,^ ,0 ,y ' , z )dy 'dz  
Square _t.] 
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Accordingly, the pixel i , j  is in the set /' or in the set C . 

Rationale for Equations 12.1-12.2 

The pixel i , j  must be in the set /' or in the set C . Suppose that it is in /'. Then 

Equation 12.1 is true. On the other hand, if the pixel i,j is in C, then there is a rationale for 

Equation 12.2 to be true. 

Consider Figure 12.1. Here the rectangle OABC has been divided into two pixels -

the number of rows m = 2 and the number of columns « = 1. Let both pixels be cracked. 

Thus the crack is completely given. Such a situation - where the crack is completely given -

is useful to understand why Equation 12.2 is true. 

z 

> 

INTACT METAL CRACK 

Figure 12.1. A situation where the crack geometry is given 
helps to arrive at the heuristic estimate 
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Since the pixels (1.1) and (2,1) are cracked, they belong to the set C. Therefore 

Pu^PiA nonzero. The second set of nonlinear equations. Equation 9.1, reduces to 

p,, JjG„(0,J',„Z,,,0,j',z')<vVc' + P3, /jG„(0,r,„Z,„0,y',zV/^z' = -fo.(0,r,„Z,,) 
S<fuare _} .1 2.1 

P,, J|G„(0,K,.„Z,„0,V'.C'XVVZ' + p,, J/G„(0,Y._„Z._,,0,y' ,z ')dydz' = -£o,(0,Y._,,Z ; 
Stfuare^\A Square ^2.\ 

or, in matrix notation. 

Jj G,, (0, Y,,, Z,, ,0, y', z')dy'dz',  JJ G„ (0, Y,,, Z,, ,0, yz')dy'dz' 
Square ̂ \.\ Square _2,\ 

jJ G.x(0, Y.,, Z,, ,0, y', z')dy'dz\ JJ G,,(0, K,,, Z,, ,0, y', z')t/y'rfz' 
Ji/ucirr.I.I Square ̂ 2.\ 

Pu 

PlA 

^Ox ^.1' ^I.l ) 
-£o , (0 , i ; , , z , , )  

The important property of the 2 x 2 matrix is that the entries in the main diagonal are 

a good deal larger (in terms of the absolute value) than the off-diagonal entries. Since we are 

only interested in a rough estimate for ,, we discard the off-diagonal entries. The 

matrix equation reduces to 

p,, JjG,,(0,y,„Z,,,0.y',2')dy'f/2' = -£o,(0,y,,.^..) 
Square^'^ 

PiA JjG.,(o,y,.,.z,„o,y',z')^y'^/z' = -£ox(O.J'x..4.) 
Square^,} 

Taking the double integrals to the right-hand side, we obtain Equation 12.2. This gives the 

rationale for the heuristic estimate. 
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Qualitative Behavior of the p, ,  

The numerator of the right-hand side of Equation 12.2 is essentially a component of 

the electric field set up by the coil. Thinking intuitively, the numerator should be large, in 

terms of absolute value, for a pixel near the coil and small for a pixel far away far away. 

Numerical evaluations confirm this intuition. Suppose, for example, that the pixel nearest the 

coil is characterized by / = l,y = 1 (Figure 12.2). The numerator is a maximum (in terms of 

absolute value) for these subscripts. 

The denominator of the right-hand side of Equation 12.2 can be interpreted as 

follows. If the pixel i,j is cracked and its current dipole density is Pj ^ = lA/m, Equation 4.6 

says that there would be a term 

Square 

in the electric field at the center of the pixel Uj . We note that the subscripts ij  are the same 

for the second and third argument of the Green's function ~ Yjj,Zij — as well as for the pixel 

over which the double integral is being computed, square ij .  Thinking intuitively, the 

double integral would be roughly the same for all iJ. This is confirmed by numerical 

evaluations. 

From the behavior of the numerator and denominator, we infer that, among the 

cracked pixels, those relatively near the coil tend to have a relatively large current dipole 

density. This is intuitively acceptable, as such pixels tend to intercept a relatively large 

fraction of the current induced by the coil. 
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Figure 12.2. The pixel (1, 1) is the pixel neare.st the coil 
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CHAPTER 13. THE IMPORTANCE OF A 
PARTICULAR DOUBLE INTEGRAL 

Scope of the Chapter 

This chapter first describes a case where all photoinductive measurements are useless 

for reconstructing the crack. The analysis of this case yields a criterion forjudging whether a 

photoinductive measurement will be useful for reconstructing the crack. 

A Case Where All Photoinductive Measurements are Useless 

Suppose that all the laser focus points (or scan points) are far away from the top edge 

of the crack. It is intuitively obvious that, because of the distance, the photoinductive 

measurements will not be helpful in reconstructing the crack. Equation 7.5 justifies this 

intuition. By Equation 8.5 

m n 

= (13.1) 
1=1 /=! 

stjuare^iJ J 

The quantity |i^^| is large as the laser focus point is far from the crack. This causes the 

function G, to be very small, because G, contains the factor 

exp(ilr)/r^, (13.2) 

= V(^a - 0)' + (-y)' + (0 -z')' (13.3) 

Therefore the double integrals are also small. The smallness of the double integrals causes 

the double sum to be small. Meanwhile, Ej, is still quite large, as it does not decrease as 

rapidly as G,. Therefore, Equation 13.1 amounts to 
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(13.4) 

This equation shows that the measurement has little or no dependence on 

Consequently, the measurement ;r„ is not useful in reconstructing the crack. In this way the 

mathematics justifies our intuition that laser focus points (or scan points) that are far from the 

top edge of the crack are not useful. 

Criterion for Judging ttie Usefulness of Photoinductive Measurements 

The analysis just presented not only confirms intuition, but also provides a criterion 

forjudging whether a photoinductive measurement will be useful. If the double integrals are 

small for all the indices i,j in the double sum, the measurement is not useful. If, on the other 

hand, the double integral is large for some value of i,j, the measurement is useful. 

In fact G^i^,r],0,0,y',z') indicates how sensitive the electric field at 77,0) is to the 

presence or absence of a crack at (0,)'',z'). The double integral over the pixel i,j indicates 

how sensitive the electric field is to the presence or absence of a crack in the pixel iJ. The 

larger the double integral, the greater is the sensitivity of the photoinductive measurement to 

the presence or absence of a crack. 

What the User can Adjust for Maximum Sensitivity to Cracks 

Values can be assigned to the following quantities at our discretion: 

(i) A = the number of photoinductive measurements 

(ii) ) = the coordinates of the laser focus point in the ath measurement, where 

a is a index that runs from 1 through A 

(iii) = the frequency of the current source in the octh measurement 
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The requirement is to assign values such that the double integral of the Green's function is as 

large as possible. To give a sense of how large this double integral can be, we note that, from 

numerical evaluations, the double integral occurring in Equation 12.2 

(13.5) 
Square I 

acts as an upper bound. 

The behavior of the double integral is covered in Chapter 14. 



www.manaraa.com

79 

CHAPTER 14. THE BEHAVIOR OF 
A PARTICULAR DOUBLE INTEGRAL 

Scope of the Chapter 

The results and discussion are split into two chapters. In this chapter the focus is on 

the behavior of the double integral whose importance was pointed out in Chapter 13. The 

chapter first presents an array of laser focus points. Next it considers how the double integral 

varies from point to point. Then it considers varying the frequency. In varying the frequency 

two conditions have to be met. The chapter explains the trade-off between the two 

conditions. The chapter concludes by connecting ill-posedness with the failure to meet the 

second condition. 

An Array of Laser Focus Points 

As a typical example, we considered the rectangle OABC shown in Figure 14.1, 

which was divided into m = 3 rows and n = 5 columns of pixels. We considered an array of 

points 

^l.l '^1.2 ^1.4' ^1.5 

^2.1'A.2'^J.3»^ 

^3.1 '^3.2' ̂ 3.3' ^3.4» ̂ 3.5 

on the top surface of the metal. Let J denote the xy coordinates of the point ,. 

(In passing, we note that, unlike the previous chapters, in this chapter it will be convenient to 

use double subscripts for ^,7?.) The numerical values of these coordinates are given in 

Figure 14.1 in terms of the parameter a, denoting the size of each pixel. 
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Figure 14.1. An array of laser focus points 



www.manaraa.com

81 

Numerical Evaluations Carried Out on a Specific Point 

Taking a specific laser focus point, say. ,, we carried out the following steps: 

(i) We evaluated the double integral of the Green's function over the pixel (/,y) for all 

indices {ij).  Note that the indices {ij) denote the pixels, while the indices r,s 

denote the laser focus (or scan) points. We varied (/,y), keeping r,s fixed. 

(ii) We sorted these double integrals in descending order in terms of the absolute value. 

(iii) We detennined what indices (/,y) gave the largest double integral, the largest but 

one, the largest but two, and so on. 

(iv) Let I,,!,,!,,... denote the largest double integral, the largest but one, the largest but 

two and so on. We examined whether i, was, say, an order of magnitude larger than 

I,, I3,., or only moderately greater than them. 

(v) We repeated the steps (i)-(iv) for several values of the current source frequency. 

Discussion of the Point P, 1.1 

We began with the point P,,, so that {r,s) = (1,1). Carrying out the steps (i)-(v), we 

found that the double integral was a maximum when the indices {i,j) = (1,1). The maximum 

value I, was almost an order of magnitude greater than These observations were 

true at both low and high frequencies. 

As the double integral was much larger for {i,j) = (1,1) than for other indices, we 

concluded that the measurement at P,, is sensitive to the presence or absence of a crack in 

the pixel (1,1). In mathematical terms. Equation 8.5 reduces approximately to 

-|2 

Eo(^.p^i.mO)+Pu JJ G\^^.vr]u-.OAy\z')dy'dz' = E'('5.i.ni.pO)(14.1) 
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an equation in which only p,, occurred. Suppose that the right-hand side of this equation 

were  measu red  wi th  t he  pho to induc t ive  me thod .  We  wou ld  have  an  equa t ion  in  wh ich  p^^  i s  

the only unknown. Therefore p^^ could be determined. Although Equation 14.1 is only 

approximately true, it is good enough to judge whether p,, is zero or non-zero, i.e., whether 

the pixel (1,1) was intact or cracked. 

Discussion of the Point P,, 

In the same way, we set (r,j) = (1,5), .y = l...«, and carried out the steps (i)-(v). We 

found that the measurement at the point P,, is useful for determining the condition, whether 

intact or cracked of the pixel (1, j). 

The results obtained so far show that the points P,,, s= l...n are well-suited to be 

scan points (or laser focus points). They can help us to infer the condition, whether intact or 

cracked, of the pixels in the first row. But they cannot help us with the pixels in the second, 

third, and other rows. 

Discussion of tlie Point , 

We turned next to a pixel in the second row, P,,, so that (r,s) = (2,1). Carrying out 

the steps (i)-(v), we found that the double integral was a maximum, i,, for {i,j) = (1,1). The 

integrals in the second, third, fourth and fifth place, t,,!,,..., corresponded to (1,7) = (1,2), 

(2,1), (1,3), (2,2). 

At high frequencies (equivalently, small skin depths), i, was a good deal larger than 

I,,!,,..., meaning that the photoinductive measurement at P,, is sensitive primarily to the 

pixel (1,1). 

At low frequencies (equivalently, large skin depths), i, was moderately greater (not a 

good deal greater) than i,,!,,..., meaning that the measurement is sensitive to several pixels, 

not merely the pixel (1,1). In particular, the measurement is sensitive to the pixel (2,1) which 
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is in the second row. Thus we found a point, P,,. such that a measurement there is useful 

data for inferring the condition of a pixel in the second row. The only proviso is that the skin 

depth should be large (equivalently the frequency should be low), say, 20-40% greater than 

|(^, ,|, the x-coordinate of the scan point P,,. 

Why Vary the Frequency 

In mathematical terms. Equation 8.5 reduces approximately to 

Eo(4. i .  -0) + L Pi.J NG, (4.1' I2.1 '0,0, y', z')dy'dz' 
[ ' - J )  S q u a r e  _i,j  

where the indices («,/) = (1,1) at high frequencies, and (,ij) = (1,1), (1,2), (2,1), (1,3), (2,2) 

at low frequencies. We paid particular attention to the double integrals corresponding to 

{ij) = (2,1), (2,2) in the double sum. These integrals were I3 and I5 If we could make I3 

and I5 large, then the measurement at P,, would be sensitive to the presence or absence of a 

crack in the pixels (2,1), (2,2), i.e., pixels in the second row. 

By varying the frequency, we tried to realize the following two conditions: 

i, = i, (14.3) 

l 3» l s  (14 .4 )  

We shall indicate the significance of these two conditions next. 

Significance of the First Condition 

If the first condition is met, it means that the double integral over the pixel (2,1) is the 

largest possible, given that it cannot be larger than i,. The measurement would be sensitive 
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to the presence or absence of a crack in pixel (2,1). This condition is equivalent to achieving 

depth resolution beyond the first row. into the second row. 

Significance of the Second Condition 

To gain a better understanding of the second condition, consider the two cracks in 

Figure 14.2. In one, the pixel (2,1) is cracked and the pixel (2,2) intact, while in the other, it 

is the other way around. There is no other difference between the two cracks. Ideally, at least 

one measurement should be different between the two cracks. Clearly the measurements for 

the two cracks are widely different if i, is a good deal greater than I5. This is the rationale 

for the second condition. 

The Need for a Trade-Off 

We found that the only way to realize the first condition was to make the frequency 

low. But this made it impossible to achieve the second condition. Similarly the only way to 

realize the second condition was to make the frequency high, which made it impossible to 

realize the first condition. Consequently, there was a need for a trade-off between the two 

conditions. The trade-off corresponded to the figure earlier cited, namely, the skin depth 

shou ld  be ,  s ay ,  20 -40% grea t e r  t han  , | ,  t he  j r - coo rd ina t e  o f  t he  s can  po in t  P , , .  

The Trade-Off and the lil-Posedness 

The very phrase "trade-off' indicates that the second condition cannot be met exactly. 

Therefore I3 is only moderately greater than I5. Therefore the measurements associated with 

the two cracks shown in Figure 14.2 are nearly the same. The existence of two cracks with 

nearly the same set of photoinductive measurements is indicative of ill-posedness. 
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Figure 14.2. Different cracks should ideally 
give rise to different photoinductive data 
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CHAPTER 15. INTERLEAVING MEASUREMENT 
AND RECONSTRUCTION 

Scope of the Chapter 

The results and discussion presented in Chapter 14 has an impact on the 

reconstruction procedure. This chapter first shows why reconstruction can be begun even 

when only one measurement has been completed. The chapter explains what inputs should 

be given in such a case, what the objective function should be and how the results should be 

analyzed. The chapter closes by pointing out how more and more reconstruction can be done, 

as additional measurements become available 

Possibility of Interleaving Measurement and Reconstruction 

In Chapter 14, we saw that a single photoinductive measurement at a particular laser 

focus point (or scan point), labeled P,, in Figure 14.1, is adequate for determining the 

condition, whether intact or cracked, of the pixel 1,1. Therefore if we make this 

measurement, and inmiediately run our reconstruction algorithm (the minimization 

algorithm), we should at least know what the condition of the pixel 1,1 is. After this, we can 

make the measurement at the laser focus point P, ,, run our inversion algorithm, and 

determine the condition, whether intact or cracked of the pixel 1,2. In short, we should be 

able to interleave measurement and minimization. 

The Inputs to the Computer Program 

Suppose that the ath measurement has just been made. The inputs to the computer 

program are as follows. 

(0 ^ct' Hct *• coordinates of the oc th laser focus point (or scan point) 

y\,ni„ " _v coordinate of the center of the base of the coil 

(iii) /„ — the frequency of the current source 
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(iv) — the photoinductive measurement 

(v) = the set of the pixels i , j  which are known to be intact from previous 

minimizations 

(vi) = the set of the pixels i , j  which are known to be cracked from previous 

minimizations 

Items (i)-(iv) have already been mentioned in Chapter 8. Items (v) and (vi) are new. To 

illustrate them, set a = 1, and consider the first minimization. There is no question of a 

previous measurement. Therefore = /,' is an empty set. So is = C,'. Therefore items 

(v) and (vi) are each the empty set. 

Objective Function 

The objective function for the ath minimization is not the quantity F defined in 

Equation 11.3, but the quantity defined by 

f .=W+SiKI (15.1)  
1 = 1  / = l  

where and j are defined in Equations 11.1-11.2. 

Analysis of Reported Values 

When the objective function in Equation 15.1 is minimized, the computer program 

reports j for all indices ij. The reported values are analyzed as follows. 

(i) For those pixels which belong to the set /^, p, y should be zero or, at least, very 

small. To illustrate, it may be small in comparison with the right-hand side of 

Equation 12.2. 

(ii) For those pixels which belong to the set C„, j should be nonzero. In fact it should 

be of the order of the right-hand side of Equation 12.2. 
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For the other pixels — the pixels neither in nor in ~ the analysis is more 

involved. Suppose, for concreteness. that the pixel 2,1 is one such pixel. We must 

first determine whether the computer program was able to calculate , reliably. 

Roughly speaking, reliability means that the tradeoff discussed in connection with 

Equations 13.3-13.4 should be a good tradeoff. More precisely, the calculation of /?,, 

is reliable if the following condition are met; 

(a) Compute the double integral over all the pixels that are neither in nor in 

C^. Let J denote the largest of these and K the largest but one. We verify 

that J is the double integral over the pixel 2,1 — the pixel we are currently 

analyzing. 

Cb) When we write J in the place of l, and K in the place of I5 , Equations 13.3-

13.4 become 

y= i ,  (15 .2 )  

J » K  (15.3) 

Here i, has the same meaning as in Chapter 13. In general i, is distinct from 

7, as I, is greatest integral over all the pixels, not merely the ones that are 

neither in /„ nor in C^. We verify that the trade-off between the relations 

(15.2) and (15.3) is good. 

Assume that both conditions (a) and (b) are met. We now see whether the p,, 

reported by the computer is small in comparison with the right-hand side of Equation 

12.2, or of the same order. Accordingly, we decide whether the pixel 1,2 is intact or 

cracked. 
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Updating for the Next Computer Run 

It is the sets ,C^^, that are updated at the end of each computer run. Suppose, for 

example, that the pixel 1,2 is found to be intact. Then we may update /'^ as follows. 

(15.4) 

C;.. = C„' (15.5) 

Or, if the pixel 1,2 is found to be cracked, we may update ,C^^, as follows. 

C .=^a  (15 .6 )  

^a+i = u the pixel 1,2 (15.7) 

Either of these updates means that we are using the results of the ath computer run in the 

next computer run. We also have the option of not updating at all, so that 

C .=C  (15 .8 )  

c;., = c„' (15.9) 

Flowcharts 

At this stage, the theory behind our numerical procedure is complete. Therefore this 

would be an appropriate stage to insert the flowcharts for both the forward and the inverse 

problems (Figures 15.1-15.9) 
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^Start of Forward Problem^ 

p (i, j) = current dipole 
density of Pixel i, j 

r = position vector of laser focus point or 
scan point 
f = eddy current frequency 

eOx, eOy = x, y components of electric 
field set up by coil at position vector r 

ex, ey = X, y components of resultant 
electric field at position vector r 

(End of forward proble^ 

Compute eOx, eOy 

Initialize ex = eOx, ey = eOy 

Solve for p (i. j) 
(See Figure 15.2) 

Begin nested loop 
outer loop i = 1 ... m 

\ inner loop j = 1 ... n / 

/ End nested loop \ 
outer loop i = 1 ... m 
inner loop j = 1 ... n 

Photoinductive measurement = 
ex * ex + ey * ey 

Divide OABC into mn pixels, m rows and n columns 

Define rectangle OABC such that given crack fits inside OABC 

Numerically integrate x component of 
Green's function over Pixel i,j. 

Multiply integral by p (i, j) and add to ex. 

Do similarly for y component 

Figure 15.1. Flowchart for the forward problem 
used to generate synthetic photoinductive data 
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Start of solving for p (i, j) ^ 

pp(k) = the current dipole 
density of Pixel k. 
pp is determined by solving 
Gpp = E. 

4—No 

This generates the 
equation p (k) = 0. 
valid as Pixel k is 

intact 

X component of 

resultant 
electric field at 
position vector 
r =0, Pixel k 

being cracked ( End of solving (or p (i 

Pixel k wholly, 
or for 

the most part, 
intact ? 

Solve Gpp = E 

Begin loop k = 1 ... mn 

End loop k = 1 ... mn 

Set position vector r = 
the center of Pixel k 

Introduce these arrays: 
pp = ID array of length mn. 

G = 2D array of size mn x mn. 
E = ID array of length mn. 

Assign numbers 1 ... mn to the pixels as follows: 
Numbers 1... n to Pixels 1,1 ... 1,n 

Numbers n+1 ... 2n to Pixels 2,1 ... 2,n 
And so on 

Begin loop 1 = 1... mn 

End loop 1=1... mn 

Set G (k, I) thus: 

Set E (k) = 0 

0 otherwise 

Set G (k, I) = integral of x 
component of Green's function 

over Pixel I 

Set E (k) = negative of x 
component of electric field of 

coil 

Begin loop 1 = 1... mn 

End loop 1 = 1... mn 

Figure 15.2. Flowchart for the obtaining 
the current dipole densities of all the pixels 

in the forward problem 
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Start of computation of objective function 

T1 is the first term of the 
objective function 

eballparic = 'ballpark' value 
of electric field 
pballbark = 'ballpark value 
of current dipole density 

T2 is the second term of the 
objective function 

T3 is the third term of the 
objective function 

^ End of computation of objective function ^ 

Objective function = T1 + T2 + T3 

Compute T1 
(See Figure 15.6) 

Compute T2 
(See Figure 15.8) 

Compute T3 

(See Figure 15.9) 

Compute eballpark, pballpark 
(See Figure 15.7) 

Normalize T1: 
T1 = T1 / (square of eballpark) 

Generate guesses for p (i, j) 

(See Figure 15.4) 

Normalize T2: 
T2 = T1 / (square of eballpark * square of pballpark) 

Normalize T3: 
T2 = T1 / (fourth power of eballpark) 

Figure 15.3. Flowchart for the computation of 
the objective function in the inverse problem 
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Q Start of generation of guesses for p (i. j) J 

Cracked Intact 

Unknown Use psuedo-
random number 

generator that 
generates either 

1 or 0 

Is Pixel i,j guessed to 
be intact or cracked? 

Intact 

Cracked 

End nested loop 
Outer loop i = 1 ... m 
Inner loop j = 1 ... n 

End of generation of guesses for p (i, j) J 

Is Pixel i,j 
intact, cracked or 

unknown? ^ 

Set 

Set 

Generate non-zero guess for p (i.j) 
(See Figure 15.5) 

Generate a guess whether Pixel i, j is cracked or intact 

Begin nested loop 
Outer loop 1 = 1 ... m 
Inner loop j = 1 ... n 

Figure 15.4. Flowchart for the generation of guesses 
for the current dipole densities of all the pixels 

in the inverse problem 
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Start of generation of non-zero guess 
for p (i. j) 

This routine will be used in 
a nested loop with outer 
loop i = 1 ... m and inner 
loop i = 1 ... n 

eOx = X component of coil's 
electric field at r 

h is a heuristic 
approximation for non-zero 

End of generation of non-zero guess 
for p (i, j) 

Compute eOx 

Get subscripts i, j 

Set h = -eOx / g 

Set r = position vector of Pixel i,j 

Numerically integrate x component of 
Green's function over Pixel i,j. 

Set g = tfiis integral 

Generate a random number in the interval 0.5 ... 2.0 
Multiply random number by absolute value of h. 

Use this for the absolute value of p (i, j) 

Generate a random number in the interval -30 ... +30. 
Add random number to phase of h (in degrees). 

Use this for the phase of p (i, j) 

Figure 15.5. Flowchart for generating a non-zero guess 
for the current dipole density of a given pixel 

in the inverse problem 
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Start of computation of first term of 
objective function 

Intact Unknown 

Cracked 

eOx, eOy = x, y 
components of coil's 
electric field at position 
vector r 

ex, ey s X, y components 
of resultant electric field 
at position vector r 

End of computation of first term of 
objective function 

Is Pixel i.j 
intact, cracked or 

unknown? ^ 

Intitialize T1 = 0 

Set r s position vector of Pixel i.j 

T1 = T1 + square of 
absolute value of ex 

Compute eOx, eOy 
Initialize ex = eOx, ey = eOy 

Begin nested loop. Outer loop i = 1 ... m. Inner loop j = 1 ... n 

Begin nested loop. Outer loop k = 1 ... m. Inner loop I = 1 ... n 

Begin nested loop. Outer loop k = 1 ... m. Inner loop I = 1 ... n 

End nested loop. Outer loop i = 1 ... m. Inner loop j = 1 ... n 

Numerically integrate x component of 
Green's function over Pixel k, I. 

Multiply integral by p (k, I) and add to 
ex. 

Do similarly for y component 

Figure 15.6. Flowchart for the computation 
of the first term in the objective function 

in the inverse problem 
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Start of computation of second term of 
objective function 

Intact Cracked 

Unknown 

eOx, eOy ^ x. y 
components of coil's 
electric field at position 
vector r 

ex, ey = X, y components 
of resultant electric field 
at position vector r 

End of computation of first term of 
objective function 

Is Pixel i,j 
intact, cracked or 
^ unknown? ^ 

Intitialize T2 = 0 

Set r = position vector of Pixel i,j 

Compute eOx, eOy 
Initialize ex = eOx, ey = eOy 

12 = 12 4- square of absolute 
value of (ex * p (i, j) ] 

Begin nested loop. Outer loop i = 1 ... m. Inner loop j = 1 ... n 

Begin nested loop. Outer loop k = 1 ... m. Inner loop I = 1 ... n 

End nested loop. Outer loop k = 1 ... m. Inner loop I = 1 ... n 

End nested loop. Outer loop i = 1 ... m. inner loop j = 1 ... n 

Numerically integrate x component of 
Green's function over Pixel k, I. 

Multiply integral by p (k, I) and add to 
ex. 

Do similarly for y component 

Figure 15.7. Flowchart for the computation of "ballpark" 
values of the electric field and the current dipole density 
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Start of computation of third term of 
objective function 

r 

Initialize T3 = 0 

r 

L Read r 7-
r = position vector of laser focus 
point or scan point 

Compute eOx, eOy 

Initialize ex = eOx, ey = eOy 

r 

eOx. eOy = x, y components of 
electric field set up by coil at 
position vector r 

ex. ey = X, y components of resultant 
electric field at position vector r 

Begin nested loop 
Outer loop [ = 1 ... m 
Inner loop j = 1 ... n 

r 

Numerically integrate x component of 
Green's function over Pixel i,j. 

Multiply integral by p (i, j) and add to ex. 

Do similarly for y component 

f 

End nested loop 
outer loop i = 1 ... m 

inner loop j = 1 ... n 

Set pip = ex * ex + ey * ey 

j  Read pi J 

r 

T3 = T3 square of absolute value of 
(pip - pi) 

r 

pi is ttie ptiotoinductive 
measurement at r 

End of computation of third term 
objective function D 

Figure 15.8. Flowchart for the computation of 
the second term of the objective function 

in the inverse problem 
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c Start of computation of 
'ballpark' values 

J Read pi ^— 
pi = the photoinductive 
measurement 

eballpark = square root of 
absolute value of pi 

Set r = the position vector of the center 
of Pixel 1,1 

Integrate of the x component of the 
Green's function over pixel 1,1 

Set g = absolute value of the integral 

pballpark = eballpark / g 

(End of computation of A 
'ballpark values J 

Figure 15.9. Flowchart for the computation of the 
third term of the objective function 

in the inverse problem 
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CHAPTER 16. ILLUSTRATING THE PROCEDURE 

Scope of the Chapter 

This chapter first notes a need for an illustrative example. After describing an 

example problem, it proceeds with certain details concerning the pixel size and the generation 

of synthetic photoinductive data. Next, it describes the first datum and the first computer run 

in detail. The stability of the crack reconstruction procedure with respect to the noise and the 

seed is also discussed. The chapter then shows how to determine in succession all the pixels 

in the crack. An instability, indicative of ill-posedness, is noticed and discussed. 

An Illustrative Example 

Chapters 10 and 15 show that solving Equations 8.5 and 9.1 to reconstruct the crack is 

a somewhat intricate procedure. We suggest that measurements and computer runs be 

interleaved. At the same time, there is a need to be alert to signs of ill-posedness. Given this 

intricacy, we shall describe the crack reconstruction procedure in some detail for a particular 

idealized crack in aluminum (Figure 16.1). 

Pixel Size 

The crack is assumed to lie within the rectangle OABC, which is divided into pixels 

of size a = 100// m. Note that the pixel size is chosen to be of the order of the spatial 

resolution that can be achieved with the photoinductive method. 

Synthetic Photoinductive Data 

Experimental measurements are not yet available for the half space test specimen 

(Figure 7.1). Therefore, we used synthetic photoinductive data to test the crack 

reconstruction algorithm. These data were acquired by mnning the forward problem for the 
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Figure 16.1. As an illustrative example, we endeavor 
to reconstruct the crack shown above 
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idealized crack shown in Figure 16.1, as described by Bowler [1], and computing E" . The 

scan plan is shown in Figure 16.2. 

The First Synthetic Datum 

For the first datum, corresponding to the index a = 1, the laser focus point (or scan 

point) was (^,, T]^) = (0.5a, y,,) (In passing, we note that we are reverting to the use of single 

subscripts for ^,7].) The frequency /, was chosen such that the skin depth was a little 

greater than |(^,|=|0.5a|, the perpendicular distance of the laser focus point and the top edge 

of the crack. Specifically, we set 

J—r = skin_ depth = 1.15fl = 1.15 x 100 = 115 um 

Substituting c=21.1 MS/m for aluminum, we obtained /, = 508 kHz, or, say, 500 kHz. 

The laser was set such that the center of its base was situated at = I'l., - r,, where 

r, is the outer radius of the coil. Thus the coil is close to the pixel (1,1) (Figure 16.3). The 

coil attempts to drive a large current through this pixel. If the pixel were to be cracked, then 

that large current would be blocked, and the value of would be considerably different 

from its value if the pixel (1,1) were intact. We generated a synthetic photoinductive datum, 

TC,, corresponding to these particulars. 

Computer Run for the First Pixel 

We indicated to the computer program that the condition, whether cracked or intact, 

of all the pixels was unknown, i.e.. 

/,'= = the empty set (16.1) 
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Figure 16.2. The scan plan used in the illustrative example 
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Figure 16.3. The photoinductive datum and the inversion for the pixel (1,1) 
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We provided the synthetic photoinductive data, tt, , and found that the computer program 

correctly predicted that the current dipole density for the pixel (1,1), p,, =0; i.e., the pixel 

( l , i )  i s  in tact .  

Convergence 

As mentioned in Chapter 12, our computer program was implemented using a Monte 

Carlo algorithm. The Monte Carlo algorithm operates by generating a sequence of /V 

pseudorandom numbers, where is an input to be provided by the user. We increased JV in 

steps of 5000, beginning with 5000. We found that for N > 20,000, the final residual was 

consistently less than 0.001 times the initial residual. 

Invariance with Respect to the Seed 

To initiate the generation of a sequence of pseudorandom numbers, it was necessary 

for the user to supply a number known as the seed. The seed may be chosen arbitrarily. In 

the context of our optimization program, it was necessary to verify that the results of the 

computer program were the same, no matter what the seed. We found that this was indeed 

the case. 

Stability with Respect to the Noise 

We added a small number 4;r, to the synthetic datum to simulate noise or 

repeatability error. Values were assigned to in the following way. In a crack-free test 

specimen, the photoinductive datum would have been Eo(|,,77,,0). But the actual 

(synthetic) datum was Tt,. We interpreted the difference Eo(<^,,J7|,0) -;r, as the signal and 

Ak^ as the noise. We let Ak^ be a random number up to 10% of the signal, so that the 

signal-to-noise ratio was up to 10%. Using ;r, +Ak^ as the datum, the program correctly 

obtained the same result, the current dipole density of the pixel (1,1) was zero, and thus this 

p ixe l  (1 ,1)  i s  in tac t  ( in  the  se t  I ' ) .  
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The result of the computer program was stable with respect to not only the seed, but 

also the noise. It is consistent with the discussion of the point P^ ^ in Chapter 14. 

The Second Data and the Second Computer Run 

For our next data, we shifted the coil as well as the laser a distance a to the right 

(Figure 16.4). The frequency was kept the same. The computer program reliably predicted 

that p,, =0, meaning that the pixel (1,2) was intact. This prediction was stable with respect 

to both the seed and the noise. Moreover, as in Equations 14.8-14.9, we could set 

(16.3) 

C'^ = C, (16.4) 

In other words, it was not necessary to supply the information learnt from the previous 

computer run, namely, the information that the pixel (1,1) was intact. Even so, the computer 

program correctly predicted the condition of the pixel (1,2). All this is consistent with the 

discussion about the point P|^(j = I.../1) in Chapter 14. 

The Data and Computer Runs for the First Row 

By moving the coil and the probe to the right in steps of a, and interleaving data 

generation with computer runs, we were able to predict the condition of all the pixels in the 

first row (Figure 16.5). In this way, the first n data helped to predict the condition of the 

pixels (1,1),(1,2),...,(1,«). 

The Data and the Computer Run for a Pixel in the Second Row 

We set a =n + l. The laser focus point was moved further from the crack; 

(<^„.i, r7„^,) = (2a,y, |) (Figure 16.6). The frequency was chosen such that the skin 
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Figure 16.4. The photoinductive datum and the inversion for the pixel (1,2) 
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Figure 16.5. The inversion is accurate for the first row of pixels 
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Figure 16.6. The photoinductive datum and the inversion for the pixel (2,1) 
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depth was a little greater than , the perpendicular distance between the laser focus point 

and the top edge of the crack; specifically = 125 kHz. We generated a synthetic 

photoinductive datum , corresponding to these particulars. By appropriately defining the 
/ / 

sets , we supplied the computer program with the results that our computer program 

had obtained for the first row of pixels. 

The computer program predicted that p,, = 0, meaning that the pixel (2,1) was intact. 

This is the correct prediction. 

We shall speak of the stability with respect to the seed and with respect to the noise 

presently. 

The Data and the Computer Runs for the Second Row of Pixels 

By shifting the coil and the laser in steps of a to the right, and interleaving data with 

computer runs, we endeavored to reconstruct the condition of all the pixels in the second row. 

The correctness of the prediction was marred in some cases by an instability with respect to 

the seed and the noise, indicative of ill-posedness. 

To illustrate, for some seeds, the computer program correctly predicted the condition 

of the pixel 2,5 to be cracked and the pixel 2,6 to be intact. For other seeds, it made the 

opposite prediction. As a result, not one, but two cracks emerged from our inversions (Figure 

16.7). We ran the forward problem for both the cracks, i.e., we computed what the 

photoinductive data would be for these cracks. It turned out that both cracks gave nearly 

the same photoinductive data, indicating that the reconstruction problem was inherently ill-

conditioned. All this is consistent with the discussion on the trade-off and the ill-posedness 

in Chapter 14. 
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Figure 16.7. The reconstruction procedure yields more than one crack 
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Regularization 

As discussed in Chapter 10, regularization involves imposing additional conditions or 

equations in an effort to eliminate ill-posedness. Using conventional eddy currents. Bowler, 

Norton and Harrison [3] imposed the additional condition that the area of the crack should be 

a minimum. Evidently, the minimum area condition helps to single out a crack with the least 

special shape. 

We considered imposing the same condition in the dissertation problem also. But the 

two cracks shown in Figure 16.7 have the same area, indicating that the minimum area 

condition does not regularize the dissertation problem. Therefore we adjoined a different 

condition — that of minimizing the perimeter of the crack. The minimum perimeter condition 

did help to select the correct crack from the two shown in Figure 16.7. 
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CHAPTER 17. RESULT AND DISCUSSION: 
CRACK RECONSTRUCTION 

Scope 

This chapter discusses some of the crack reconstructions which were carried out. The 

chapter indicates the metals considered and goes on to describe the crack sizes. After 

defining the pixel size and scan plan, the chapter presents the reconstruction results. The 

chapter closes with a discussion of ill-posedness, touching on regularization. 

Metals Considered 

We considered test specimens made of aluminum and titanium. Titanium ranks rather 

low among the metals in terms of electrical conductivity, while aluminum ranks rather high. 

The quality of the reconstruction presented below did not depend on the conductivity. 

Therefore, we believe that our results will be applicable to a broad range of nonmagnetic 

metals. 

Magnetic materials were not considered. The signals from magnetic materials are not 

well-characterized, being dependent on factors like aging, exposure to atmosphere and 

surface damage [21]. 

Crack Size 

A major point of this thesis is that the photoinductive method can deal with cracks 

that are smaller than the inner radius of the coil. The inner radii of typical coils range from 

0.5 mm to several millimeters; for example. Moulder, Uzal and Rose cite a coil with an inner 

radius of 535 {ivci [16, the L probe]. We will show that it is possible in principle to 

reconstruct cracks whose linear dimensions are on the order of hundreds of microns (Figures 

17.1 - 17.2). 
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Figure 17.1. A test case with length greater than depth 

Figure 17.2. A test case with length less than depth 
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1.25mm 

1.25mm 

Figure 17.3. A crack of the order of the coil radius 

We also inverted for the shape of a much larger crack, with a length of 12.5 mm 

(Figure 17.3) This particular crack is similar to the crack for which Bowler computed 

impedance changes [1, Table I, Expt 1]. 

Pixel Size 

The pixels were l(X)/xm by 100 m for the first trial crack (Figure 17.1), 50 ^ m by 

SOji m for the second trial crack (Figure 17.2), and 1.25 mm by 1.25 mm for the third trial 

crack (Figure 17.3). 

Scan Plan 

We used the scan plan of Figure 16.2 in all the cases, substituting the appropriate 

value for the pixel size a. 
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Reconstruction Results 

Corresponding to the cracks in Figures 17.1 - 17.3, the reconstruction program 

yielded the cracks shown in Figures 17.4 -17.6 respectively. In each case, there were 

nonunique solutions, owing to ill-posedness. In each case, one of the nonunique solutions 

was in fact the actual crack. Running the forward problem on the other cracks as a check, we 

found that they gave nearly the same photoinductive measurements as the correct crack. 

Stability with Respect to the Noise 

For all the trial cases reported, the prediction for the pixels of the first row was stable 

with respect to the noise up to a signal-to noise ratio of 10%. Thus ill-posedness did not pose 

a problem in the first row. 

It should be pointed out here that the seed was fixed whenever stability with respect 

to the noise was studied, since varying the seed itself can cause instability. 

For the pixels in the second row, the prediction was stable if the signal-to-noise ratio 

was, say, 1%, but for 4% (or more), the prediction often lost stability, in consequence of ill-

posedness. 

The stability with respect to noise was still less for the pixels in the third, fourth, etc. 

rows, meaning that the ill-posedness was greater in these rows than in the second. 

Results were identical for both aluminum and titanium. 

Regularization 

The cracks shown in Figure 17.4 have the same area. Therefore it is not possible to 

single out a unique crack, by adjoining the condition that the area of the crack should be a 

minimum. However, by adjoining a different condition, namely, that the perimeter should be 

a minimum, we can single out a unique crack. The crack so singled out is the correct crack, 

the 
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Figure 17.4. Reconstruction corresponding to Figure 17.1 
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Figure 17.5. Reconstruction corresponding to Figure 17.2 
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Figure 17.6. Reconstruction corresponding to Figure 17.3 
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crack shown in Figure 17.1. Evidently the minimum area condition singles out a crack with 

the least special shape. 

Turning our atttention to Figures 17.5-17.6, the minimum perimeter condition helps 

to single out a unique crack in those figures also. 

It appears that the minimum perimeter condition helps to regularize the dissenation 

problem. 
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CHAPTER 18. CONCLUSIONS 

Scope of the Chapter 

This chapter gives a brief statement of the work done, the main findings, the work for 

the future and the specific contribution of die dissertation. 

What was Done 

This dissertation has been concerned with reconstructing cracks from photoinductive 

measurements. We have developed the first inversion method for reconstructing the crack 

from photoinductive data. We tested the method on tight surface-breaking cracks in 

aluminum and titanium. These cracks ranged from hundreds to thousands of microns. 

Findings 

Crack reconstruction is inherently ill-posed, due to instability to small changes in the 

input data that manifests itself as a problem of nonuniqueness. Apart from this limitation, the 

crack reconstruction method was successful in all the test cases. By seeking a crack of 

minimum perimeter, we were able to single out from the nonunique solutions, a crack giving 

the correct estimate of the depth. All these results were weakly dependent on the 

conductivity of the metal; consequently the crack reconstruction method is likely to perform 

well with all nonmagnetic metals. Good estimates for the crack depth were obtained in all 

the cases tested. After regularization, the crack shape was also recovered for all the test 

cases. 

Work for the Future 

As bolt holes are subject to stress, they are prone to the development of small, tight-

surface breaking cracks. Experimental photoinductve measurements are now available for a 
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set of laboratory specimens possessing bolt holes. Therefore it would be of considerable 

interest to extend this work to these test specimens. The technical problem is to derive 

formulas for the incident electric field Eg and the Green's function G, (Equation 4.5) that are 

appropriate for bolt hole geometry. If this can be done, either analytically or numerically, the 

crack reconstruction method described here can be used with little or no modification. 

The Speciflc Contribution of the Dissertation 

As the photoinductive method is relatively new, the literature does not appear to 

contain any theoretical-numerical investigations of its potential in crack reconstruction. This 

dissertation has contributed such an investigation. More explicitly: 

• The dissertation has contributed a numerical technique that reconstructs ~ subject to the 

issue of ill-posedness — small (circa 100 microns) tight surface-breaking cracks in 

nonmagnetic materials. 

• Applying this numerical technique, the dissertation has shown that the depth of such 

cracks can be recovered from photoinductive measurements. In addition, the shape of the 

cracks can also be recovered if the problem is regularized. 

• The dissertation has shown that the magnitude of the Green's function helps a user to 

judge beforehand at what laser focus points and at what eddy current frequencies 

photoinductive measurements will be useful for crack reconstruction. 

• The dissertation has shown that three concepts occurring in Bowler's eddy current 

formulism - the current dipole density, the Green's function and the electric field set up 

by the coil - hold the key to reconstructing cracks from photoinductive measurements. 
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APPENDIX A. THE FORMULA FOR A 
PHOTOINDUCTIVE MEASUREMENT 

Auld's Reciprocity Formula 

Chapters 4-5 considered precision wound coils fed by a constant current source and 

set above a test specimen. In Chapter 4, the measured quantity was a difference of 

impedance: the difference between the no-crack impedance and the impedance with the 

crack. In Chapter 5, the measured quantity was a difference of voltage: the difference 

between the laser-high voltage and laser-low voltage. These differences are covered by 

Auld's reciprocity theorem [22, Chapter 3, Equation 3.14]. 

For Chapter 3, theAuld's reciprocity theorem can be quoted as follows: 

jjj^^^cruck '^reference^^ (A. 1 ) 
text ^:tpectmen 

where A<J is the difference between the conductivity of the crack (0 if the material of the 

crack is an insulator) and the conductivity of the metal. The quantity I is the current of the 

current source. 

For Chapter 5, Auld's reciprocity theorem can be quoted as 

(A.2) 
texr^ specimen 

The Bom Approximation 

As the laser increases the temperature only a little, E„„ = Moreover, the quantity 

<7„n - G„g is nonzero only in the heated region shown in Figure 6.5. Therefore Equation A.2 

reduces to 
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(A.3) 
healeJ_ rci;»r)#f 

If the heated region is very small, the integrand is practically a constant, and Equation A.3 

further reduces to 

= (A.4) 

which shows that the difference in voltage is a linear function of . 

Wby the Frequency Domain? 

Auld's formula depends on Lorentz's reciprocity theorem [12]. Since Lorentz's 

reciprocity theorem is quoted only in the frequency domain, Auld's formula must be also 

quoted in the frequency domain. Therefore the photoinductive method must be carried out 

only the frequency domain. 
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